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[1] An unstructured grid, finite volume, three-dimensional (3-D) primitive equation
coastal ocean model (FVCOM) has been developed for the study of coastal ocean and
estuarine circulation by Chen et al. (2003a). The finite volume method used in this model
combines the advantage of finite element methods for geometric flexibility and finite
difference methods for simple discrete computation. Currents, temperature, and salinity
are computed using an integral form of the equations, which provides a better
representation of the conservative laws for mass, momentum, and heat. Detailed
comparisons are presented here of FVCOM simulations with analytical solutions
and numerical simulations made with two popular finite difference models (the Princeton
Ocean Model and Estuarine and Coastal Ocean Model (ECOM-si)) for the following
idealized cases: wind-induced long-surface gravity waves in a circular lake, tidal
resonance in rectangular and sector channels, freshwater discharge onto the continental
shelf with curved and straight coastlines, and the thermal bottom boundary layer over the
slope with steep bottom topography. With a better fit to the curvature of the coastline using
unstructured nonoverlapping triangle grid cells, FVCOM provides improved numerical
accuracy and correctly captures the physics of tide-, wind-, and buoyancy-induced waves
and flows in the coastal ocean. This model is suitable for applications to estuaries,
continental shelves, and regional basins that feature complex coastlines and bathymetry.
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1. Introduction

[2] The most difficult technical issues in coastal ocean
modeling are to (1) resolve the irregular coastal geometry
and (2) ensure conservation of momentum, mass, and heat.
In the last decade, finite difference and finite element
methods have been widely used in ocean modeling. The
most popular finite difference and finite element coastal
ocean models are the Princeton Ocean Model (POM)
[Blumberg and Mellor, 1987], the semi-implicit Estuarine
and Coastal Ocean Model (ECOM-si) [Blumberg, 1994],
the Regional Ocean Model (ROM) [Haidvogel et al., 2000],
and the Dartmouth College Model (QUODDY) [Lynch and
Naimie, 1993; Naimie, 1996]. The finite difference method
has its advantage in simple code structure and computa-
tional efficiency. This method, however, is limited because

of difficulty in accurately fitting irregular coastal geometry.
Introducing an orthogonal or nonorthogonal curvilinear
coordinate transformation into a finite difference model
can provide a moderate fitting of coastal boundaries, but
these transformations are incapable of resolving the coastal
boundaries characterized by numerous barrier islands and
tidal creek complexes. The greatest advantage of the finite
element method is its geometric flexibility. Unstructured
triangular meshes used in this method can provide an
accurate fitting of irregular coastal boundaries. The tradi-
tional finite element method, however, usually involves an
extensive large size matrix calculation at every time step,
which is achieved at the expense of computational efficiency.
Because the governing equations are numerically solved
through a least squares variational method, the finite element
method, however, does not provide an explicit way to check
the mass conservation in individual cells during the compu-
tation. The p-type finite element method [Maday and
Patera, 1988] or discontinuous Galerkin method [Reed
and Hill, 1973; Cockburn et al., 1990] have been introduced
into updated finite element techniques. Application of these
methods to current finite element coastal ocean models
could significantly improve computational accuracy and
efficiency as well as mass conservation [Hughes et al.,
2000].
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[3] Recently, we have developed an unstructured grid,
finite volume, three-dimensional primitive equation, coastal
ocean model (FVCOM) [Chen et al., 2003a]. Unlike dif-
ferential forms used in a finite difference model, FVCOM
discretizes the integral form of the governing equations.
Since these integral equations can be solved numerically by
flux calculation used in the finite difference method over
arbitrarily sized triangular meshes, the finite volume ap-
proach is better at guaranteeing mass conservation in both
individual control elements and the entire computational
domain. In view of this technical approach, FVCOM
combines the best attributes of finite difference methods
for simple discrete computational efficiency and finite
element methods for geometric flexibility. This model has
been successfully applied to studies of flow in a number of
estuaries and coastal oceans that are characterized by
complex irregular geometry, intertidal flooding/drying pro-
cesses, steeply sloping bottom topography, etc. (see http://
fvcom.smast.umassd.edu).
[4] One common method used to evaluate an ocean

model is to compare the model results with observations.
While such comparison can be extremely useful, problems
with sparse data and possibility of obtaining a good
model/data fit for improper physical reasons limit this
approach to model validation. In order to provide an
objective evaluation of FVCOM, numerical experiments
were conducted to compare FVCOM with analytical
solutions for the following idealized cases: wind-induced
long-surface gravity waves in a circular lake; tidal reso-
nance in an semienclosed channel; freshwater discharge
over the continental shelf with curved and straight coast-
lines; and the thermal boundary layer over the slope with
steep bottom topography. Comparisons were also made
with structured grid finite difference models versus ana-
lytical solutions to examine the impact of geometric fitting
on the accuracy of the numerical solution. The Princeton
Ocean Model (POM) and its semi-implicit version
(ECOM-si) were selected as representative of structured
grid finite difference models in model validation experi-
ments. POM and ECOM-si [Blumberg and Mellor, 1987]
are two reliable finite difference ocean models that have
dominated coastal ocean modeling in the last 20 years.
The development of FVCOM was motivated by our failure
to apply POM and ECOM-si to resolve the complex
irregular geometries of tidal creeks in an estuarine appli-
cation. Since FVCOM and POM/ECOM-si describe the
same dynamics, comparisons between these models pro-
vide us with an objective view on the impact of coastal
geometry on the coastal and estuarine physics.
[5] This paper summarizes the validation experiment

results with the focus on the evaluation of the need for
unstructured grid meshes for coastal ocean modeling appli-
cation. Although the comparison was made between
FVCOM and POM/ECOM-si, the results are generally
applicable to any unstructured and structured grid ocean
models.
[6] The rest of this paper is structured as follows.

FVCOM, POM, and ECOM-si are briefly described in
section 2. The comparison results for the four idealized
cases are presented in section 3, followed by several
examples of application of FVCOM and POM/ECOM-si
to tidal processes in the Gulf of Maine/Georges Bank region

in section 4. Discussion and conclusions are presented in
section 5.

2. Models

[7] Numerical models used in this study consist of seven
primitive ocean governing equations (three for momentum,
one for incompressible continuity, two for temperature and
salinity, and one for density) [Blumberg and Mellor, 1987;
Chen et al., 2003a]. They are prognostic models with a free
surface and are mathematically closed using the modified
Mellor and Yamada level-2.5 (MY-2.5) turbulent closure
scheme for vertical mixing [Mellor and Yamada, 1982;
Galperin et al., 1988]. The models use the s-transformation
in the vertical to convert irregular bottom topography into a
rectangular computational domain for simple numerical
approach. The governing equations for motion, temperature,
salinity and density are given as
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where x, y, and s are the east, north, and vertical axes of the
s-coordinate; u, v, and w are the x, y, s velocity
components; D is the total depth equal to a sum of mean
depth H and surface elevation z; T is the temperature; S is
the salinity; r is the total density equal to a sum of
perturbation density r0 and reference density ro; f is the
Coriolis parameter; g is the gravitational acceleration; Km is
the vertical eddy viscosity coefficient; Kh is the thermal
vertical eddy diffusion coefficient; Fu, Fv, FT, and FS

represent the horizontal momentum, thermal, and salt
diffusion terms; and Ĥ is the absorption of downward
shortwave irradiance. Km and Kh are parameterized using
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the MY-2.5 turbulence submodel, and horizontal diffusion
coefficients are determined using a Smagorinsky eddy
parameterization method [Smagorinsky, 1963].
[8] The surface and bottom boundary conditions for u, v,

and w are specified as
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p
(u, v) are the x

and y components of surface wind and bottom stresses. The
drag coefficient Cd is determined by matching a logarithmic
bottom layer to the model at a height zab above the bottom,
i.e.,
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where k = 0.4 is the von Karman’s constant and zo is the
bottom roughness parameter.
[9] The surface and bottom boundary conditions for

temperature are:
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where Qn(x, y, t) is the net surface heat flux; cp is the
specific heat of seawater. AH is the horizontal thermal
diffusivity, a is the bottom inclination angle and n is the
horizontal coordinate on the s surface in the direction of the
bottom slope as defined in Figure A1 (Appendix A). Qs(x, y,
0, t) is the shortwave flux incident at sea surface given as

Qs x; y; z; tð Þ ¼ Qs x; y; 0; tð Þ Re
z
a þ 1� Rð Þez

b

� �
; ð11Þ

where a and b are attenuation lengths for longer and shorter
(blue-green) wavelength components of the shortwave
irradiance, and R is the percent of the total flux associated
with the longer-wavelength irradiance. This absorption
profile, first suggested by Kraus [1972], has been used in
numerical studies of upper ocean diurnal heating by
Simpson and Dickey [1981a, 1981b] and others. The
absorption of downward irradiance is included in the
temperature (heat) equation in the form of
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This approach leads to a more accurate prediction of near-
surface temperature than the flux formulation based on a
single wavelength approximation [Chen et al., 2003b].
[10] The surface and bottom boundary conditions for

salinity are:
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where P̂ and Ê are precipitation and evaporation rates,
respectively. Note that a groundwater flux can be easily
added into the model by modifying the bottom boundary
conditions for vertical velocity and salinity.

2.1. POM

[11] POM is a structured grid, finite difference model that
consists of external and internal modes and is solved
numerically using two split time steps [Blumberg and
Mellor, 1987]. The external mode is composed of the
vertically integrated transport equations of (1) and (2).
The transport equations are solved for the sea surface
elevation z by an explicit difference scheme in which the
time step Dt1 is constrained by min(Dx, Dy)/

ffiffiffiffiffiffi
gD

p
, where

Dx and Dy are the horizontal grid sizes. The internal mode
is a fully 3-D model described by equations (1)–(5) and
solved using a longer time step Dt2 that is constrained by
the phase speed of the lowest mode internal wave. Linkage
between external and internal modes is through z: the
surface pressure gradients at each Dt2 time step in the
internal mode are calculated directly by output of z from
the external mode.
[12] POM uses the curvilinear orthogonal transformation

to fit moderately irregular coastal geometry. The equations
are discretized following the design of an ‘‘Arakawa-C’’
grid and transport forms of equations are numerically solved
using a second-order accurate central difference scheme. A
time-filtering program is used to suppress the computational
mode. Notice here that the bottom boundary conditions (10)
and (14) for temperature and salinity in POM are simplified
to @T

@s = @S
@s = 0. One reason for this is the difficulty in the

finite difference method to calculate accurately a and @T
@n

over an irregular 3-D bottom slope. The error caused by
inaccurate calculation of these two terms in a finite differ-
ence approach can be larger than their real values. This
simplification is generally sound for most continental
shelves where bottom slope and bottom topography are
small. However, over a steep sloping bottom like the shelf
break and continental slope, this simplification may over-
estimate vertical mixing in the bottom boundary layer and
thus cause a numerical bias in horizontal and vertical
velocities.

2.2. ECOM-si

[13] ECOM-si is the modified semi-implicit version of
POM [Blumberg, 1994]. Treating both the barotropic pres-
sure gradient in the momentum equations and water trans-
port terms in the continuity equation implicitly, this model is
solved numerically only with a single time step Dt. The
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semi-implicit numerical method used in ECOM-si leads to a
linear symmetrical diagonal algebraic system at each time
step, which can be solved efficiently by a preconditioned
conjugate method with no sacrifice in computational time
[Casulli, 1990]. In ECOM-si, Dt is constrained by min(Dx,
Dy)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, which can be one order of magnitude larger

than that chosen in POM for the same model problem.
Increasing Dt must be balanced by the decrease in energy
conservation due to the numerical decay nature of semi-
implicit schemes.
[14] The curvilinear transformation in ECOM-si has re-

cently been replaced by a nonorthogonal transformation
developed by Chen et al. [2004a]. In this new modified
code, the nonlinear advection terms in momentum, temper-
ature, and salinity equations are calculated using the mul-
tidimensional positive definite advection transport
algorithm [Smolarkiewicz, 1984; Smolarkiewicz and Clark,
1986]. To avoid numerical instability due to the Euler
forward scheme for the case with no advection and hori-
zontal and vertical diffusions [Mesinger and Arakawa,
1976], a predicted corrector scheme is adopted to compute
the Coriolis terms in the momentum equation [Chen et al.,
2001a; Zhu et al., 2001]. Unlike POM, ECOM-si (both
orthogonal and nonorthogonal coordinate versions) does not
include a time filter program to ensure computational
stability. However, ECOM-si also uses the same simplified
bottom boundary conditions for temperature and salinity
(@T@s = @S

@s = 0) as POM, which does not satisfy the no flux
condition over a sloping bottom (see Appendix A).

2.3. FVCOM

[15] FVCOM is an unstructured grid, finite volume, 3-D
primitive equation coastal ocean model developed recently
by Chen et al. [2003a, 2004b]. Like POM, FVCOM also is
composed of external and internal modes that are computed
separately using two split time steps. A distinct difference is
that FVCOM is solved numerically by the flux calculation
in an integral form of the equations (1)–(5) over nonover-
lapping, unstructured triangular grids. Flux calculation
ensures not only the conservation of total mass over the
whole computational domain but also on individual meshes
used to compute currents and water properties. The finite
volume numerical approach combines the advantages of

finite element methods for geometric flexibility and finite
difference methods for simple discrete code structure and
computational efficiency. Since FVCOM was recently de-
veloped, a brief discussion on the grid configuration is
given below.
[16] FVCOM subdivides the horizontal numerical com-

putational domain into a set of nonoverlapping unstructured
triangular meshes. An unstructured triangle is composed of
three nodes, a centroid, and three sides (Figure 1), on which
u and v are placed at centroids and all scalar variables, such
as z, H, D, w, S, T, r, Km, Kh, Am, and Ah are placed at
nodes. Scalar variables at each node are determined by the
net flux through the sections linked to centroids and the
middle point of the sideline in the surrounding triangles
(the tracer control element (TCE)), while u and v at centroids
are calculated on the basis of the net flux through three sides
of that triangle (the momentum control element (MCE)). A
second-order accuracy upwind finite difference scheme is
used for flux calculation in the integral form of the advective
terms [Kobayashi et al., 1999; Hubbard, 1999], and the
modified fourth-order Runge-Kutta time-stepping scheme is
used for time integration. Similar to ECOM-si, no temporal/
spatial smoothing is needed for numerical stability.
[17] Unlike POM and ECOM-si, FVCOM uses an exact

form of the no flux bottom boundary conditions for tem-
perature (10) and for salinity (14) The bottom slope and
gradients of temperature and salinity over each TCE on 3-D
irregular bottom topography in FVCOM can be calculated
using a simple Green’s theorem (see Appendix A). This
finite volume approach ensures the correct physics of the
bottom boundary layer over a sloping bottom, which is
found to be essential in simulating mixing and upwelling
over abrupt bottom slopes and submarine banks.

3. Model Validation

3.1. Wind-Induced Surface Gravity Waves in a
Circular Lake

[18] The first example used to validate FVCOM is a
comparison with POM and ECOM-si regarding the simu-
lation of wind-induced long-surface gravity waves in an
idealized circular lake for which an analytic solution can be
derived. Two types of geometries are considered: both flat
bottom and sloping bottom lakes. Discussion for each case
is given below.
3.1.1. Flat Bottom Case
[19] For a constant surface wind stress imposed in the

surface in the x direction on the flat bottom circular lake
shown in Figure 2, the inviscid linear transport process in a
polar coordinate system satisfies the following governing
equations:
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Figure 1. Locations of velocity and tracer variables in the
unstructured grid of FVCOM.
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where r and q are the radius and angle axes; U and V are the
r and q components of volume transport; z is the surface
elevation; f and g are the Coriolis parameter and gravita-
tional acceleration; H is the mean water depth; and tax is the
x (eastward) component of the surface wind stress.
[20] Assuming that the lake is initially at rest, the motion

is continuous in the interior, and there is no flux into the
solid boundary, the boundary and initial conditions for
(15)–(17) are given as

U jr¼ro
¼ 0; U ;V ; zð Þjr¼0 ! finite; ð18Þ

U ;V ; zð Þjt¼0 ¼ 0: ð19Þ

Equations (15)–(17) with conditions (18) and (19) can be
solved analytically [Csanady, 1968; Birchfield, 1969], with
the exact solution in nondimensional variables z, U and V
given as
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rof
; c =

ffiffiffiffiffiffiffi
gH

p
; to = taxg

r3of
4, ak = (ŝk � 1)/(ŝk + 1

� ŝk
2/l2), bk = ak/(ŝk

2 � 1). The parameters Ao(r) Ak(r),
Fk(r) and Gk(r) are given as

Ao rð Þ ¼ I1 r=lð Þ=I1 1=lð Þ; ð23Þ

Ak rð Þ ¼ I1 gkrð Þ=I1 gkð Þ ŝkj j < 1

J1 gkrð Þ=J1 gkð Þ ŝkj j > 1

�
; ð24Þ

Fk rð Þ ¼ Ak rð Þ=r � ŝk dAk rð Þ=drð Þ; ð25Þ

Gk rð Þ ¼ dAk=dr � ŝkAk rð Þ=r; ð26Þ

where gk
2 = (1 � ŝk

2)/l2; J1 and I1 are the original and
modified first-kind Bessel functions, respectively. The kth
mode frequency ŝk is determined by solving the
following equation:

1� skgk
1

I1 gkð Þ
dI1 gkð Þ
dgk

¼ 0: ð27Þ

[21] The solutions (20)–(22) consist of two parts: one is a
wind-induced steady state motion, and the other is the
Kelvin/Poincare waves excited at t = 0. Amplitudes of the
surface elevation and velocity decrease rapidly as mode
number increases; the exact solutions of z, U and V can be
accurately expressed by a sum of the first 7 modes with
frequencies of ŝ1,2,3. . ..7 = 7.0; �7.84; 21.41; �21.48; 34.3;
�34.33; and �47.03.
[22] Considering a case with f = 10�4 /s, ro = 67.5 km,

H = 75 m, c = 27.1 m/s and l = 4.016, we compared
FVCOM with POM and ECOM-si versus the exact solution
of (20)–(22). Numerical grid for FVCOM was constructed
using nonoverlapping triangular meshes with a horizontal
resolution of about 1.78 km (Figure 3, top). Total number of
grid cells was 9084. Numerical grids for POM and ECOM-si
were made using square cells with the same horizontal
resolution as FVCOM (Figure 3, bottom). The total number
of cells was 5776, 4536 of which were used for computation.
The time step was 15 s for FVCOM and POM and 1 s for
ECOM-si. The stability criteria is Dt < Ds/

ffiffiffiffiffiffiffi
gH

p
for POM

and FVCOM and Dt < Ds/juj (where Ds is the horizontal
resolution and juj is the magnitude of the current velocity)
for ECOM-si, respectively. While a longer time step could be
selected in principle for ECOM-si, the ECOM-si derived
surface elevation and transports computed using the same
time step as FVCOM and POM decreased rapidly with time
because of the decay nature of the semi-implicit scheme used
in ECOM-si. A shorter time step of 1 s was required for
ECOM-si to provide an identical result to POM. A compar-
ison of computational efficiency between ECOM-si and
POM should be made with caution, because stability does
not always represent accuracy.
[23] Numerical experiments were conducted for three

cases with constant eastward surface winds of 3, 5, and
10 m/s. The resulting surface wind stresses for these three
cases were 0.013, 0.036, and 0.144 N/m2. In the case with a
wind speed of 3 m/s, for example, the FVCOM-computed
surface elevation and transport accurately matched the
analytical solutions in both amplitudes and phases. POM
showed a phase delay after one model hour. The time delay
in phase increased with model hours: 17.5 minutes at the
end of the first model day and then up to 68.4 minutes at the
end of the fourth model day (Figure 4 and Table 1). POM-
induced time-dependent phase shift can be seen clearly in
Figure 5. With a time step of 1 s, ECOM-si showed the
exact same results as POM.

Figure 2. Idealized circular lake configuration.
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[24] The time delay in phases of model-computed eleva-
tion and transport found in POM and ECOM-si is clearly
related to the rectangular grid used in the model, which
failed to resolve accurately the coastline of the circular lake.
This phase delay decreased with an increase of the horizon-
tal resolution (Table 1). For example, as the cell number for
POM or ECOM-si was doubled (i.e., Dx = Dy 
 0.89 km),
the time delay in the phases of elevation and transport
decreased to 8.3 minutes at the end of the first model day
and to 36.3 minutes at the end of the fourth model day, about
one-half those reported in the case with Dx = Dy 
 1.78.
Even better agreement in amplitude and phase between
POM or ECOM-si and the analytical solution was found
when Dx = Dy 
 0.45 km. While the phase delay should
approach zero as horizontal resolution increases to a certain
level, this approach sacrifices computational efficiency. The
time required for a 10-day run of POM increased 4 times
when Dx(Dy) was reduced from 1.78 km to 0.89 km, and

18 times when Dx(Dy) was reduced to 0.45 km. Even for
Dx(Dy) < 0.45 km, the phase delay in POM-computed
elevation and transport still exists!
[25] Unlike POM or ECOM-si, FVCOM seemed less

sensitive to horizontal resolution. When the length of a
triangular sideline increased to 2.67 km (twice as large as
that shown above), FVCOM caused little shift in phase,
even though the model led to minor underestimation of
amplitudes of the elevation and transport. Therefore with
regard to computational efficiency, the unstructured grid
seems better than the structured grid to capture the correct
physics and reach a certain accuracy of numerical simula-
tion in this case for the wind-induced motion in a flat-
bottomed circular lake.
3.1.2. Sloping Bottom Case
[26] Considering now a circular lake with water depth

given as

H rð Þ ¼ Ho 1� r

ro


 �2
" #

; ð28Þ

where ro is the radius of the lake and Ho is the water depth at
the center (Figure 6). Birchfield and Hickie (BH) [1977]
found an analytic solution for equations of (15)–(17) with
boundary conditions (18)–(19) for this geometry and a
constant wind stress. The exact solution of the surface
elevation and transport for the case with Ho = 100 m and
ro = 100 km is in the form of a complicated double series,
in which each radial mode number contains three wave
terms: two for a gravity wave pair and one for a topographic
wave. By carefully examining the solution, we found that
the series does not converge in the first few leading modes.
As an initial value problem, the analytical solution is
dominated by the first four radial modes in the first model
day, while higher modes must be taken into account for a
longer time period. For this reason, the comparison of the
numerical models with the analytical solution was limited
here to the first model day. FVCOM, POM, and ECOM-si
use the s-coordinate transformation in the vertical which
becomes invalid as H(ro) = 0. In order to make these models
run for this case, a depth of 0.5 m was added everywhere in
H(r), with the understanding that the numerical solution
might lead to a bias with BH’s analytical solution for a
longtime run.
[27] In the first model day, both FVCOM and POM

produced a reasonable simulation of the elevation composed
of the first four radial modes of the analytical solution,
although POM showed a small perturbation at the center at
the first model hour and a biased maximum value away
from the coast at the 20th hour (Figure 7). Significant
difference between FVCOM and POM occurred after day
two. For example, at the end of day five, FVCOM with a
horizontal resolution of 5 km showed a symmetric distri-
bution of elevation over the circular lake, with a maximum
positive value on the right coast and a minimum negative
value on the left coast (Figure 8a). Although POM with a
horizontal resolution of 2.5 km showed a similar pattern,
multiple artificial eddies occurred in the transition region
from positive elevation to negative elevation and a series of
small-scale perturbations in elevation appeared along the
coast on both sides of the wall (Figure 8b). This difference

Figure 3. Unstructured and structured grids used in
FVCOM and POM/ECOM-si, respectively, for the wind-
induced gravity wave test in the idealized circular lake
shown in Figure 2. The triangular symbol (x = 67.5 km, y =
101.25 km) is the location used for the comparison of
surface elevation and transport between analytic, FVCOM,
POM, and ECOM-si solutions.
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was clearly evident in model-computed transport. FVCOM
showed a spiral circulation pattern along the coast and a
double cell circulation in the interior (Figure 9a), while
POM-computed circulation was characterized by multiple
eddies in the transition region of elevation and significant
divergence flows close to the coast (Figure 9b). It is clear
that eddies predicted by POM are numerical noise due to
inaccurate fitting of the curved coastline of the circular lake,
since the size and strength of these eddies decreased as
horizontal resolution increased (Figure 10). Again, this
numerical noise should disappear as horizontal resolution
increases but only with a large sacrifice in computational
efficiency. The noise may reduce if the no-slip boundary
condition is used at the boundary.

3.2. Tidal Resonance in a Semienclosed Basin

[28] On the basis of the results of tidal simulation in the
Bohai Sea, Chen et al. [2003a] found that FVCOM suc-
ceeded in capturing the near-resonance nature of the M2

tidal wave in semienclosed bays in the Bohai Sea, while
ECOM-si failed. Numerical experiments with FVCOM and
ECOM-si for tidal simulation raises the question on the
importance of resolving accurately the coastal geometry for
near-resonance tidal waves in coastal oceans. To address

Table 1. Relationship Between Phase Delay and Horizontal

Resolution for an Idealized Circular Lake Experiment With POMa

Ds, km Dt, s Th, hours

D_phase, min

1 day 2 days 3 days 4 days

1.78 15 2 17.5 29.8 48.1 68.4
0.89 15 8 8.3 14.0 17.9 36.3
0.44 2 36 2.5 5.9 7.8 8.2
aDs is the horizontal resolution; Dt is the time step used for time

integration; Th is the total compute times for a 10 day integration on a Dec
Alpha 600 MHz Workstation; D_phase is the phase delay relative to the
analytical solution.

Figure 4. Comparison of time series of surface elevation (z), x-component (U), and y-component (V)
transports between analytic (heavy solid line), FVCOM (thin solid line), and POM/ECOM-si (dashed
line) solutions at the location shown in Figure 3.
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this question, we applied FVCOM, POM, and ECOM-si to
idealized semienclosed rectangular and sector channels to
examine the response of these models to tidal forcing at the
open boundary under normal (nonresonance) and near-
resonance conditions.
3.2.1. One-Dimensional Case: A Rectangular Channel
[29] The geometric structure of the channel is shown in

Figure 11, where H(x) = xHo/L is the water depth that
decreases linearly toward the end of the channel, Ho is the
water depth of the open boundary of the channel, L1 and L
are the distances from the origin to the end and mouth of the
channel, and B is the width of the channel. Considering a
2-D nonrotating initial value problem, the governing equa-
tions controlling tidal waves in the channel are given as

@u

@t
þ g

@z
@x

¼ 0;
@z
@t

þ @uH

@x
¼ 0: ð29Þ

Figure 5. Comparison of the surface elevation at the end of the 1st hour, 1st day, and 5th day between
analytic, FVCOM, and POM/ECOM-si solutions.

Figure 6. The circular lakewith sloping bottom configuration.
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Rewriting z = zoe
�ist, u = uoe

�ist and substituting them into
(29) yields,

d2zo
dx2

þ 1

x

dzo
dx

þ 1

x

Ls2

gHo

zo ¼ 0: ð30Þ

Specifying a periodic tidal forcing with amplitude A at the
mouth of the channel, i.e.,

zojx¼L¼ A; ð31Þ

and a no-flux boundary condition at the end of the channel,
i.e.,

dzo
dx

����
x¼L1

¼ 0; ð32Þ

the analytical solution of (30) is given as

zo ¼
A

F L;L1; kð Þ Y 0
o 2k

ffiffiffiffiffi
L1

p� 

Jo 2k

ffiffiffi
x

p� 
�
�J 0o 2k

ffiffiffiffiffi
L1

p� 

Yo 2k

ffiffiffi
x

p� 
�
ð33Þ

where

F L; L1; kð Þ ¼ Jo 2k
ffiffiffi
L

p� �
Y 0
o 2k

ffiffiffiffiffi
L1

p� 

� Yo 2k

ffiffiffi
L

p� �
J 0o 2k

ffiffiffiffiffi
L1

p� 

;

ð34Þ

Jo and Yo are the zeroth-order Bessel functions of the first
and second kinds, and

k2 ¼ s2L

gHo

: ð35Þ

[30] For geometric parameter values of B = 5 km (note:
while this is a simple 1-D case with the solution indepen-
dent of B, a finite (>0) value of B is chosen here to allow use
of the 3-D models for this 1-D study), Ho = 20 m, L � L1 =
290 km, and a periodic tidal forcing with an M2 tidal
frequency s = 2p/(12.42� 3600 s), two cases are considered
in the numerical experiments. In the first case, L = 580 km,
L1 = 290 km, and H(L1) = 10 m. For a given small tidal

Figure 7. Comparison of surface elevation at the end of the 1st and 20th hours between analytic,
FVCOM, and POM solutions. Horizontal resolution is 5 km for FVCOM and 2.5 km for POM.
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amplitude of 1 cm at the mouth of the channel, zo is
characterized with a node point at the middle of the channel
and a maximum value of 1.2 cm at the end of the channel
(Figure 12, solid line). This case is far from resonance. In the
second case, L = 300 km, L1 = 10 km,H(L1) = 0.67 m and the
channel is very close to resonance. For the same given tidal
forcing at the channel mouth, zo reaches a maximum eleva-
tion exceeding 20 cm at the end of the channel and a node
point at a distance of 65 km away from the end (Figure 13,
solid line). For the sake of discussion, here we refer to the
first and second cases as ‘‘normal’’ and ‘‘near-resonance’’
cases, respectively.
[31] Numerical experiments were designed for a 2-D

rectangular channel in which nonlinear advection, cross-
channel variation, rotation, and mixing were set to zero. The
FVCOM and POM/ECOM-si numerical grids were con-
structed by triangular and square meshes with a horizontal
resolution of 2.5 km. Since the cross-channel current was
zero everywhere, only two triangular and square grid cells

in the cross-channel section were needed to calculate water
elevation and along-channel transport for either FVCOM or
POM/ECOM-si. To avoid artificial oscillations caused by an
impulse of tidal forcing at open boundary, the elevation and
current at each grid at the initial time step were specified
according to the analytical solution.
[32] For both normal and near-resonance cases, the

amplitudes and phases of the M2 tidal wave computed by
FVCOM, POM, and ECOM-si were almost identical, with
all of them in close agreement with the analytical solution
(Figures 12 and 13). The analytic solution describes a
standing wave with a node point either at the center (for
the normal case) or near the coast (for the near-resonance
case) of the channel. These features were accurately repro-
duced by all the three models no matter which numerical
schemes were used.
[33] This result indicates that in this 1-D linear case, with

a proper selection of time step and horizontal resolution, the
numerical solution of the tidal resonance did not depend on
the numerical methods used to solve the governing equa-
tions. The standard version of POM uses a second-order

Figure 8. Comparison of FVCOM and POM surface
elevations at the end of the 5th day. Horizontal resolution is
5 km for FVCOM and 2.5 km for POM.

Figure 9. Comparison of FVCOM and POM horizontal
transport vector fields at the end of the 5th day. Horizontal
resolution is 5 km for FVCOM and 2.5 km for POM.
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accurate central difference scheme for both time integration
and spatial gradients of surface elevation and volume
transport. Although it requires a time filter to avoid numer-
ical instability, the filter seems to work well in the 1-D
rectangular case. ECOM-si uses a semi-implicit scheme to
remove the restriction of the time step used to calculate the
surface gravity waves. By selecting the time step with
caution, this method also resolves tidal resonance with the
same accuracy as POM. FVCOM is solved numerically
using an integrated form of the momentum equations with
an approach of flux calculation with a second-order accurate
upwind scheme for advection and the modified fourth-order
Runge-Kutta time stepping for time integration [Chen et al.,
2003a]. The result of FVCOM was identical to POM and
ECOM-si.
3.2.2. Two-dimensional Case: A Sector Channel
[34] Consider a 2-D nonrotating initial value problem of

the tidal oscillation in a semienclosed, constant depth sector
channel shown in Figure 14. The governing equations
controlling the boundary-forced tidal waves in this case
are given as

@Vr

@t
¼ �g

@z
@r

; ð36Þ

@Vq

@t
¼ �g

@z
r@q

; ð37Þ

@z
@t

þ @rVrH0

r@r
þ @VqH0

r@q
¼ 0; ð38Þ

where r and q are the radius and angle axes; Ho is the
constant mean water depth; Vr and Vq are the r and q
components of velocity; and z is the surface water
elevation.

[35] Eliminating Vr and Vq from (36)–(38) yields an
equation for z as follows

@2z
@t2

� gH0r2z ¼ @2z
@t2

� gH0

@2z
@r2

þ 1

r

@z
@r

þ 1

r2
@2z

@q2


 �
¼ 0: ð39Þ

[36] Assuming z = Re[z0(r, q)e
�i(wt�90�)] and substituting

it into (39) produces

@2z0
@r2

þ 1

r

@z0
@r

þ 1

r2
@2z0
@q2

þ w2

gH0

z0 ¼ 0: ð40Þ

On the solid wall, the boundary conditions of no normal
flux are given as

@z0
@r

����
r¼L1

¼ 0;
@z0
@q

����
q¼a=2

¼ 0;
@z0
@q

����
q¼�a=2

¼ 0; ð41Þ

Figure 10. Comparison of surface elevation and horizontal transport vector fields in the sea level
transition zone at the 5th day for POM cases with horizontal resolutions of 1.0 and 2.5 km.

Figure 11. Configuration of the semienclosed channel for
the tidal wave test case. O.B.: open boundary; B.W.:
boundary wall at the end of the channel; B: the width of the
channel; and Ho: the mean depth at the open boundary. L1
and L: the distance of the boundary wall and open boundary
from the origin x = 0.
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where a is the arc angle of the sector that is a measure of the
width. Specifying a harmonic tidal forcing at the open
boundary given as

z0jr¼L¼ �A cos mp qþ a
2

� �
=a

h i
; ð42Þ

the analytic solution of (40) satisfying (41) is given as

z0 r; qð Þ ¼ c1Jgm r
wffiffiffiffiffiffiffiffi
gH0

p

 �

þ c2Ygm r
wffiffiffiffiffiffiffiffi
gH0

p

 �� �

� cos mp qþ a=2ð Þ
a

� �
ð43Þ

where

c1 ¼ �A � Y 0
gm

L1
wffiffiffiffiffiffiffiffi
gH0

p

 �,

Jgm L
wffiffiffiffiffiffiffiffi
gH0

p

 �

Y 0
gm

�

� L1
wffiffiffiffiffiffiffiffi
gH0

p

 �

� J 0gm L1
wffiffiffiffiffiffiffiffi
gH0

p

 �

Ygm L
wffiffiffiffiffiffiffiffi
gH0

p

 ��

c2 ¼ ��A � J 0gm L1
wffiffiffiffiffiffiffiffi
gH0

p

 �,

Jgm L
wffiffiffiffiffiffiffiffi
gH0

p

 �

Y 0
gm

�

� L1
wffiffiffiffiffiffiffiffi
gH0

p

 �

� J 0gm L1
wffiffiffiffiffiffiffiffi
gH0

p

 �

Ygm L
wffiffiffiffiffiffiffiffi
gH0

p

 ��

gm ¼ mp=a:

Jgm
and Ygm

are the gmth-order Bessel functions of the first
and the second kind, respectively.
[37] For geometric parameter values of H0 = 1 m, a = p/4,

L1 = 90 km, m = 1, and a periodic M2 tidal forcing [w = 2p/
(12.42 � 3600 s)], two cases were considered in numerical
experiments. The first case is referred to the ‘‘normal’’ case
with L = 132 km and A = 1 cm. In this case, z(r, q, t) is
characterized by an oscillation with symmetric amplitudes
relative to a node line at q = 0. The oscillation on either side
of the node is 90� out of phase, with the maximum
amplitude of 1.5 cm appearing at the lateral solid boundary.
The second case is referred to ‘‘near-resonance’’ case, in
which the tidal forcing was the same as that in the first case
but L = 158 km. In this case, the oscillation pattern is the
same as that in the ‘‘normal’’ case but z(r, q, t) has a maximum
amplitude at the lateral boundary exceeding 48 cm, which is
about 32 times larger than that observed in the ‘‘normal’’
case.
[38] In both cases, FVCOM was configured using the

unstructured triangular grid with a horizontal resolution of
about 2 km (Figure 15, top). To examine the influence of
coastal geometric fitting on the numerical solution, we ran
POM and ECOM-si using curvilinear and rectangular grids
with horizontal resolutions of 1 and 2 km, respectively
(Figure 15, middle and bottom).
[39] In the ‘‘normal’’ case, POM and ECOM-si with the

curvilinear grid produced nearly identical results as FVCOM,

Figure 12. Comparison of model-predicted and analytic amplitudes and phases in the along-channel
direction for the nonresonance case. (solid line) Analytic solution; (dashed line) model simulation. The
origin of the horizontal coordinate is located at the end of the channel. In this case the initial distributions
of current and surface elevation are specified using the analytic solution.
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accurately matching the analytic solution (Figure 16). Even
for the rectangular grid case, POM still produced a reasonable
numerical solution with small errors of�0.1 cm in amplitude
and�0.5� in phase. In this case, ECOM-si was very similar to
POM, except with a small error in phase. These results
suggest that in the ‘‘normal’’ case, the mismatch of coastal
geometry due to the rectangular grid is only an issue
regarding accuracy. This issue can be easily addressed by
increasing the horizontal resolution.
[40] In the ‘‘near-resonance’’ case, FVCOM accurately

reproduced the amplitude and phase of the large oscillation
(Figure 17, left), while POM and ECOM-si were sensitive
to grid structure and horizontal resolution. For the curvilin-
ear grid case, POM-derived amplitude of the oscillation
along the line A–B (see Figure 14) decayed with time in the
case with 2-km horizontal resolution, but it converged
closely to the analytic solution as the horizontal resolution
was increased to 1 km (Figure 17, middle). In this case, the
convergence of ECOM-si to the analytic solution was much
smaller than POM. Even for the case with a horizontal
resolution of 1 km, ECOM-si still showed a considerable,
time-dependent decay in amplitude and a bias in phase
along the line A–B. For the rectangular grid case, POM-
and ECOM-si-derived oscillation amplitudes in the case
with 2-km horizontal resolution increased with tidal cycles,
which led to numerical instability when the amplitude of the

surface elevation was larger than the water depth after
30 tidal cycles. With the horizontal resolution increased to
1 km, POM and ECOM-si reached stable numerical resolu-
tions. At the end of the 20th tidal cycle, both POM and

Figure 13. Comparison of model-predicted and analytic amplitudes and phases in the along-channel
direction for the near-resonance case. (solid line) Analytic solution; (dashed line) model simulation. The
origin of the horizontal coordinate is located at the end of the channel. In this case the initial distributions
of current and surface elevation are specified using the analytic solution.

Figure 14. Configuration of the idealized semienclosed
sector channel. Lines A–B and C–D are transects used to
make comparison of amplitude and phase for the different
model runs.
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ECOM-si captured the spatial distribution of the amplitude
of the oscillation, but caused an unrealistic bias in phase
(Figure 18). With the increase of time integration, POM
showed an oscillatory numerical solution relative to the
analytical solution in both amplitude and phase (Figure 19).
Increasing the horizontal resolution in POM and ECOM-si
improved the accuracy in amplitude, but did not help in
eliminating the big bias in phase. This experiment suggests
that when the tidal oscillation is close to resonance, the phase

of the oscillation is muchmore sensitive to geometrical fitting
than the amplitude.

3.3. Freshwater Discharge Over an Idealized
Continental Shelf

[41] The dynamics of buoyancy-driven flow caused by
freshwater discharge is a hot topic in coastal oceanography.
Numerous studies have been conducted on this topic in the
last decade, which have provided us with a comprehensive
understanding of the mechanisms for the formation and
evolution of the low-salinity plume or fronts over the
continental shelf [e.g., Chao, 1988; Chapman and Lentz,
1994; Kourafalou et al., 1996; Garvine, 1999; Chen et al.,
1999; Chen, 2000]. The discussion given below focuses
solely on the comparison between FVCOM and POM for
freshwater discharge experiments on idealized shelves in a
circular lake.
3.3.1. Cosine Shelf With a Curved Coastline
[42] Consider a closed circular lake with a shelf bottom

profile given by

H rð Þ ¼
Hd þ Ho

2
þ Hd � Ho

2
cos

p r � roð Þ
R� ro

� �
ro � r � R

Hd r < ro

8<
: ð44Þ

where H(r) is the water depth at distance r from the origin of
the circle, R is the radius of the circular lake, ro is the
distance from the origin of the circle to the edge of the shelf,
Ho is the water depth at R, and Hd is the constant water
depth region of r � ro. With a constant freshwater discharge
of 1000 m3/s injected into the lake from the mesh at the
center point of the southern coast, we examined the
influence of horizontal resolution and coastline geometric
matching on the evolution of the coastal low-salinity plume
that develops over the sloping shelf in the circular lake. The
background salinity used in this experiment was a constant
30 practical salinity units (psu) throughout the domain.
[43] According to the theory of coastal low-salinity

plumes, the freshwater injected into the shelf of the lake
should rotate clockwise and then flow along the coast like a
coastal trapped wave. A low-salinity plume or front should
form because of mixing between the freshwater and shelf
water. These basic dynamical features were all captured by
POM and FVCOM, but the plume structure predicted by
POM and FVCOM differed significantly because of the
numerical schemes used to estimate tracer advection, hor-
izontal resolution, and accuracy of geometric matching. For
the case with a horizontal resolution of 4.22 km, the low-
salinity plume predicted by FVCOM occupied the entire
shelf with a cross-shelf scale the same as the width of the
shelf, while the plume predicted by POM extended over the
interior region off the shelf, forming a detached eddy-like
circulation at the outer edge of the shelf by day 10 (Figures 20–
22, top).When the horizontal grid sizewas reduced to 1.78 km,
the plumes predicted by FVCOM and POM shifted toward
the coast (Figures 20–22, middle). A quasi-equilibrium state
occurred as the horizontal grid size was made smaller or
equal to �0.89 km (Figures 20–22, bottom). These results
provided two important facts. Firstly, attention must be paid
to the horizontal resolution in simulating the spatial structure
of the low-salinity plume over the inner shelf of the coastal
ocean, no matter which model is used. Secondly, the finite

Figure 15. Unstructured and structured grids used in
FVCOM and POM/ECOM-si, respectively, for the tidal
experiments in the semienclosed sector channel shown in
Figure 13. Nonoverlapped triangular grid with a horizontal
resolution of about 2 km is used for FVCOM. POM and
ECOM-si are configured using curvilinear (middle) and
rectangular (bottom) grids with horizontal resolutions of 1
and 2 km, respectively (only the 2-km grids are shown
here).
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difference model may lose the coastally trapped wave nature
of the low-salinity plume at a certain lower horizontal
resolution and thus produce an unrealistic, artificial eddy
structure over the shelf.
[44] For a given horizontal resolution, the low-salinity

plume propagated faster along the shelf in FVCOM than
POM. This difference was caused by geometric matching of
the curved coastline and the difference in tracer advection
schemes. The unstructured triangular grid used in FVCOM
provided accurate coastline matching with a guarantee of no
mass flux through the coastal wall. Downstream of the
freshwater source, the plume water predicted by FVCOM
flowed along the curved coastline, with a maximum water
level and along-shelf current at the coast (Figure 23, top).
The square grids used in POM resulted in a step-like coastal
boundary in the numerical computational domain. Since the
no flux condition was applied in a direction normal to the
step-shaped boundary, the maximum along-shelf current
occurred at a distance away from the coast (Figure 23,
bottom). This step-shaped coastal model boundary acted
like a drag force to slow down the downstream movement
of the low-salinity plume and to exaggerate the cross-shelf
secondary current within the plume.
[45] POM also features a curvilinear orthogonal coordi-

nate transformation, which could provide proper matching
of smooth coastlines. While POM setup with polar coor-
dinates for this circular lake case should give much better
results that are comparable with FVCOM, in general,
curvilinear orthogonal coordinate transformations are not
as efficient as unstructured triangular grids in application to

real coastal ocean domains characterized with irregular
geometry.
3.3.2. Impact of Horizontal Resolution on the Structure
of the Plume
[46] In the above case, the tracer concentration at grid

points of the freshwater runoff source in FVCOM and POM
was specified. This approach seems very straightforward
because the tracer concentration of the runoff is easily
determined by direct measurements taken at either the river
mouth or upstream. In the numerical model, this approach is
built on an assumption that no mixing occurs in the
individual computational volumes connected to the fresh-
water source (see Appendix B). This assumption should be
generally sound in the case with sufficient horizontal
resolution, but it might cause an unrealistic buoyancy
gradient near the source of the runoff and thus exaggerate
the spatial scale and propagation speed of the low-salinity
plume in the case with coarse horizontal resolution. This is a
common issue no matter what types of models are used.
Here we use FVCOM as an example to derive a criterion
required for a convergence numerical solution of the river
plume problem. This criterion should be applied to other
finite difference models.
[47] Considering a case with no vertical and horizontal

diffusion, the vertical integral form of the salinity equation
in FVCOM with river runoff is given as

@SD

@t
¼ �

I
vnSDdsþ QŜo

� �.
Wz ð45Þ

Figure 16. (top) Surface elevation amplitude (cm) and (bottom) phase (�G) along the cross-sector
(D–C) transect for analytic, FVCOM, POM, and ECOM-si solutions for the ‘‘normal’’ case.
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where S is the salinity at nodes of triangles connecting to the
coastal node of the TCE, vn is the depth-averaged velocity
component normal to the boundary line of the TCE, Q is the
volume transport of the runoff, Ŝo is the salinity contained in
the runoff water, and Wz is the area of the TCE containing
the runoff. Assuming that at the time step n, the
computational domain is filled with water with salinity of
Sn that is uniform everywhere, then at time step n + 1, the
salinity at the node point connected to the runoff source can
be estimated by

Snþ1 ¼ Sn
Dn

Dnþ1
�Dt

H
vnD

nds

Dnþ1Wz


 �
þ DtQŜo

Dnþ1Wz ; ð46Þ

where Dt is the internal mode time step used for numerical
computation. For simplification of scaling analysis, a
forward numerical scheme is used here for time integration.
Replacing the transform term in (46) using the continuity
equation yields

Snþ1 ¼ Sn þ DtQ

Dnþ1Wz Ŝo � Sn
� 


: ð47Þ

Specifying that Ŝo = 0 for the freshwater discharge case,
(47) can be simplified to

Snþ1 ¼ 1� DtQ

Dnþ1Wz


 �
Sn: ð48Þ

In order to keep Sn+1 positive (i.e., the salinity can never
become less than 0), (48) must satisfy

1� DtQ

Dnþ1Wz � 0 or Dnþ1 � DtQ

Wz : ð49Þ

Assuming that Wz � L2, Dt � IsplitL/
ffiffiffiffiffiffi
gD

p
, Dn+1 � D, where

L and D are typical scales of the horizontal resolution of the
TCE and water depth, then in order to ensure the salinity at
the node point connected to the runoff to be zero, the
magnitude of L must be

L � IsplitQ

D
ffiffiffiffiffiffi
gD

p : ð50Þ

For given values of Q � 103 m3/s, D � 10 m, and Isplit = 1,
L should be of order 100 m.
[48] In many numerical experiments for the coastal ocean,

because of computer resource limitation, L is usually taken

Figure 17. Comparisons between model-computed and analytic surface elevation amplitudes and
phases along the transect A–B at the 20th, 40th, 60th, and 80th tidal cycles for the ‘‘near-resonance’’
case. (left) FVCOM; (middle) POM-curvilinear; and (right) ECOM-si curvilinear.

C03018 CHEN ET AL.: FVCOM VALIDATION

16 of 34

C03018



as a value that is one order of magnitude larger than that
required by the above criterion (50). This suggests that if we
consider the mass conservation in the TCE connected to the
runoff, the salinity calculated by (45) would be smaller than
the salinity specified for the runoff water. On the other hand,
if the horizontal resolution specified in the model is coarser
than that required in (50), then, the model would not ensure
mass conservation in the TCE that is connected to the runoff
source and would also exaggerate the salinity gradient near
the runoff source. Subsequently, it would overestimate the
intensity of the low-salinity plume and cause an unrealisti-
cally faster propagation of the plume in the downstream
direction.
[49] Consider an idealized continental shelf shown in

Figure 24, with a water depth of 10 m at the coast, a linear
slope of 0.0026 over the shelf, and a flat bottom in a region
of 100 m deep. The background salinity is 30 psu. For a
given discharge rate of 1000 m3/s, the salinity at the node
point connected to the runoff was estimated by two meth-
ods: one was specified as zero all the time, and the other
was calculated directly in the TCE containing the runoff by
the salinity equation. For the sake of discussion, we call
here the first case ‘‘specified’’ and the second case ‘‘calcu-
lated’’. For a given same river discharge, in the specified
case, the river discharge does not affect the salinity balance
in a TCE connected to the point source, while in the

calculated case, the salinity at the point source is determined
by the salt equation with consideration of the mass balance.
[50] The spatial distributions and propagation speeds of

the low-salinity plume predicted by the ‘‘specified’’ and
‘‘calculated’’ methods significantly differ in the case with a
coarse horizontal resolution of 20 km (Figure 25, top). In
the ‘‘specified’’ case, the zero salinity specified at the node
point connected to the runoff source built a large salinity
gradient. As a result, the edge of the plume had arrived in
the downstream region about 300 km from the discharge
source at day 10 (with an averaged speed of 35 cm/s). In the
‘‘calculated’’ case, however, since the salinity at the node
point connected to the runoff source was calculated directly
by the net salinity flux through the TCE, the salinity
gradient was at least one order of magnitude smaller than
that found in the ‘‘specified’’ case. As a result, the plume
moved downstream at a slower speed of about 11 cm/s. It is
clear that when horizontal resolution is low, the ‘‘specified’’
method tends to exaggerate the intensity and propagation of
the plume, while the opposite results occurred in the
‘‘calculated’’ method.
[51] As horizontal resolution increases, the model-predicted

plume tended to converge toward a similar pattern in either
‘‘calculated’’ and ‘‘specified’’ case (Figure 25, middle and
bottom). The spatial distributions of the plume at day 10
predicted by these two methods were almost identical as the

Figure 18. (top) Surface elevation amplitude (cm) and (bottom) phase (�G) along the cross-sector
(D–C) transect for the analytic, FVCOM, POM, and ECOM-si solutions at the 20th tidal cycle for the
‘‘near-resonance’’ case. In this case the exact solution shows the phase is opposite relative to the node line
at q = 0 with a large phase change in the radial direction near the open boundary. The cross-sector plot
shown here is taken at the middle region of the channel.
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horizontal resolution reached 200 m. This is consistent with
the conditions in criterion (50). If one agrees that 200 m is
sufficient enough to produce the ‘‘true’’ structure of the
plume in this case, then the ‘‘calculated’’ method seems to
have a faster convergence rate than the ‘‘specified’’ method
regarding the horizontal resolution required to produce this
‘‘true’’ structure. In the ‘‘calculated’’ case, the spatial distri-
bution and propagation speed of the plume shown on day
10 in the case with 1-km horizontal resolution was very
similar to the ‘‘true’’ one, while in the ‘‘specified’’ case, the
spatial coverage of the plume predicted with 1-km horizontal
resolution was still significantly larger than that shown in the
‘‘true’’ plume structure. This suggests that the ‘‘calculated’’
method is more practical than the ‘‘specified’’ method
because it ensures salt conservation in the TCE connected
to the runoff source and is also more flexible for horizontal
resolution.

3.4. Thermal Boundary Layer on Steep Slope Bottom

[52] When a model with the s-transformation coordinate
system is applied to a shallow bank or shelf break, it faces

difficulty because of s-errors over steep sloping bottoms. In
the s-transformation coordinate system, the baroclinic pres-
sure gradient force is divided into two terms in each of the
horizontal momentum equations. These two terms have the
same order of magnitude but opposite signs. Small numer-
ical errors in the calculation of these two terms can result in
significant numerical biases of model-predicted current and
density. Since the steep sloping bottom is a region where a
rapid change of the thickness of s-levels occurs, it is a
region with the largest s-errors [Haney, 1991; Mellor et al.,
1994; Chen and Beardsley, 1995; Song and Wright, 1998].
[53] The s-errors in POM and ECOM-si have been

examined both theoretically and numerically by Mellor et
al. [1994] and Chen and Beardsley [1995]. Mellor et al.
pointed out that these errors in POM can be contained at a
certain level if sufficiently high horizontal and vertical
resolution is used. Chen and Beardsley found that at a fixed
location over a sloping bottom, s-errors in ECOM-si
increase with water depth. Since the buoyancy-driven
velocity error caused by the s-transformation always oppo-
ses the velocity in the thermal boundary layer on the sloping

Figure 19. Comparisons between model-computed and analytic elevation amplitudes and phases along
the A–B transect at the 20th, 40th, 60th, and 80th tidal cycles for the ‘‘near resonance’’ case. The results
of POM and ECOM-is shown here are from runs using the rectangular grid (with a horizontal resolution
of 1 km).
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bottom, this error can be suppressed if the vertical resolution
is high enough to resolve the thermal current near the
bottom. FVCOM also uses the s-transformation in the
vertical so that its solutions should include similar s-errors
over steeply sloping bottoms. To investigate this problem,
numerical experiments were conducted to compare FVCOM
with POM for an idealized linear stratification case with
background mixing over steep bottom topography.
[54] Consider a circular lake with a maximum radius of

78 km at the surface and maximum water depth of 300 m in
the interior. This lake is characterized with a narrow circular
shelf with a width of 15 km and a constant slope of 0.02.
The slope specified in this study features steep bottom
topography typically found near the shelf break or on banks
(such as Georges Bank). The initial water temperature is
assumed to be at linearly distributed in the vertical as

T ¼ Ts �
Tb � Ts

H
; ð51Þ

where Ts is the surface water temperature taken as 15�C, Tb
is the bottom water temperature given as 6�C, and H is the
maximum water depth specified as 300 m.
[55] POM uses the specified temperature bottom condi-

tion @T
@z = 0, while FVCOM uses the complete temperature

bottom condition given in (10). To compare FVCOM with
POM, we ran FVCOM for two cases: one with the same
bottom boundary condition as POM and the other with the
condition given in (10). Both POM and FVCOM were first
run with no mixing and external/internal forcing. Indepen-
dent of the length of this initial time integration, the water
temperature remained unchanged and no velocity was
produced. This means that the numerical schemes used in
POM and FVCOM don’t produce s-errors in the case with
linear distribution of water temperature, no mixing and
external/internal forcing.
[56] For a constant background vertical mixing coeffi-

cient of 10�4 m2/s and no temperature flux in the vertical
direction on the bottom (@T@z = 0), both POM and FVCOM
show that the water temperature near the bottom of the slope

Figure 20. Comparison of FVCOM and POM surface salinity structures at the end of the 10th model
day for runs with horizontal resolutions of 4.22, 1.78, and 0.89 km. In this case a constant freshwater
discharge of 1000 m3/s was specified at the central coastal TCE on the southern coast.
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was mixed to satisfy the bottom boundary condition for
temperature. As a result, a thermal boundary layer formed
above the bottom due to mixing, and currents arose through
momentum adjustments to the resulting horizontal stratifi-
cation [Wunsch, 1970; Phillips, 1970]. With 31 s-levels in
the vertical, the structure of the thermal boundary current
predicted by POM and FVCOM depended on the horizontal
resolution. For example, with 4.5-km horizontal resolution,
both POM and FVCOM developed the multiple layer along-
slope boundary currents with time (Figures 26–27). The
scale of these currents was the same as the shelf width, and
the along-shelf and vertical velocities reached 1 cm/s and
3 � 10�3 cm/s, respectively, after day 10. The pattern of
multiple layer currents disappeared in both POM and
FVCOM simulations as horizontal grid size decreased to
2.25 km (Figure 28). The currents predicted by these two
models were characterized with a two-layer flow: one was
near the surface and rotated cyclonically along the coast,
and the other was limited to a very thin thermal boundary
layer above the bottom of the slope and rotated anticycloni-
cally around the basin. The maximum speed of the along-
slope velocity within the thermal boundary layer was about

0.6 cm/s. An upwelling, with a vertical velocity of about
1 � 10�3 cm/s, was found in the thermal boundary layer.
These current patterns are consistent with the theory derived
by Wunsch [1970]. This theory suggests that a background
mixing tends to produce an along-isobath thermal current.
Facing downstream in the direction of the current, the
lighter water is always on the observer’s left. Also, when
the pressure gradient forcing moves the water in the interior
into the boundary layer, thermal diffusion tends to reduce its
density and hence cause it to upwell along the slope.
[57] Our numerical experiments imply that both POM and

FVCOM can resolve the structure of the thermal boundary
layer over sloping bottom topography at a certain horizontal
resolution. The only difference is that FVCOM-predicted
currents are symmetrically distributed to the center of the
lake, while POM-predicted currents are not. There is no
physical reason supporting an asymmetric distribution of
the current across the lake for POM, since the numerical
grid is composed of squares which are symmetrically
distributed around the circular lake and also the mixing
coefficient is the same everywhere. The fact that the
asymmetric current pattern mainly occurs near the surface

Figure 21. Comparison of FVCOM and POM cross-shelf transects at the end of the 10th model from
the runs shown in Figure 20.
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around the coast implies that POM has a limitation when
applied to a very shallow region. This is probably due to the
time-filtering program used in the code and also to the
limitation in geometric fitting.
[58] It should be pointed out here that the model results

shown above were all based on the bottom boundary
condition @T

@s = 0. As discussed above, this simplification
may lead to an overestimation of vertical mixing and hence
horizontal and vertical velocities over a steep slope bottom.
Replacing this with the complete bottom boundary condi-
tion (10), we reran FVCOM for the case with linear initial
stratification and constant background mixing described
above. With a given horizontal resolution of 2.25 km, the
currents by day 10 predicted by FVCOM were about one
order of magnitude weaker than those described above
(Figure 29). These results suggest that use of the approxi-
mate boundary condition for temperature (@T@s = 0) can
exaggerate vertical mixing and thus overestimates both
along-isobath and vertical velocities within the thermal
boundary layer that develops over a steeply sloping bottom.
This s-error problem can be minimized in FVCOM by

using the complete condition for no normal heat flux at the
boundary (10) over steeply sloping bathymetry.

4. Examples of FVCOM Applications

4.1. Tidal Simulation in the Gulf of Maine/Georges
Bank

[59] The Gulf of Maine (GOM)/Georges Bank (GB)
region is characterized by near-resonance M2 tidal motion
[Garrett, 1972]. In particular, the M2 tidal range in the Bay
of Fundy (BF) can exceed 8 m, over a factor of 12 greater
than the North Atlantic forcing along the shelf break. The
nature of tidal resonance in this region is caused by the near-
resonance geometry of the entire GOM/GB/BF system
rather than a local abrupt change of the bathymetry
[Greenberg, 1979]. The GOM/GB/BF is a good region to
test FVCOM regarding its capability for simulating tidal
waves under a near-resonance condition. There have been
many regional modeling efforts made on tidal simulation in
this region [e.g., Greenberg, 1979; Lynch and Naimie, 1993;
Chen et al., 2001b]. All these models capture the resonance
nature of the M2 tide in the GOM/BF and also provide the

Figure 22. Comparison of FVCOM and POM surface elevations at the end of the 10th model day from
the runs shown in Figure 20.
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reasonable simulation of the amplitudes of tidal elevation in
the BF region.
[60] The numerical domain of FVCOM covers the entire

GOM/GB/BF region and is enclosed by an open boundary
running from the New Jersey shelf to the Nova Scotia shelf
(Figure 30, top), with horizontal resolution varying from
1.0 km on the northern flank of GB, �2–3 km over the
southern flank of GB, Browns Bank, and inner shelf coastal
regions, and up to 10 km near the open boundary. For
comparison with our previous ECOM-si model results
[Chen et al., 2001b], we used the same geometric config-
uration as ECOM-si: the water depth was cut off at 300 m
off the shelf break connecting to the open ocean and 31 s-
levels with uniform interval were specified in the vertical,
which corresponds to a vertical resolution of 3.3 m on the
40-m isobath over GB and adjacent shelf regions and 10 m
on the 300-m isobath. Time steps used in FVCOM were
24.84 s for external mode and 248.4 s for internal mode,

which correspond to 180 time steps of the internal mode
integration over an M2 tidal cycle.
[61] FVCOM was forced initially by the barotropic M2

tidal elevation and phase at the open boundary. These
elevations and phases were specified by using values
interpolated from results of the Egbert and Erofeeva
[2002] 0.5� � 0.5� inverse tidal model. No open boundary
condition for currents was required to be specified in
FVCOM, since currents are calculated at the center of each
triangular cell, which can be determined through the as-
sumption of mass conservation in the open boundary cell
[Chen et al., 2004b].
[62] FVCOM model results were directly compared with

the results predicted by ECOM-si. The coverage area of the
ECOM-si numerical domain was similar to that of
FVCOM’s (Figure 30, bottom). All configuration and tidal
forcing were the same as those used in FVCOM, except that
the ECOM-si grid utilized orthogonal curvilinear coordi-
nates in the horizontal with a horizontal resolution varying
from 2.5 to 4 km over GB and in the interior region of the
GOM, about 4 km in the cross-bay direction in BF, and 4 to
20 km near the open boundary. To examine the influence of
geometric fitting on the nature of the large tidal oscillation
in BF, we also ran ECOM-si with 2-km horizontal resolu-
tion in the cross-bay direction. In the ECOM-si experi-
ments, a gravity wave radiation condition on current was
specified at the open boundary to minimize the reflection of
wave energy into the computational domain [Chen and
Beardsley, 1995; Chen et al., 2001b]. Time step used in
ECOM-si was 414 s for the coarse grid case and 206 s for
the finer grid case.
[63] Figure 31 shows the comparison between observed

and model-predicted amplitude and phases in the GOM/GB/
BF. The data used for the observed chart are composed of
1/6 � 1/6 degree satellite altimeter results and historic tidal
measurements. The comparison clearly shows that the
FVCOM simulation of the M2 tidal wave in the GOM/GB/
BF is more accurate than ECOM-si. The near-resonance
amplitude of the M2 tidal elevation in BF was captured by
FVCOM but not by ECOM-si. The observations show that
the maximum amplitude of the M2 tidal elevation inside the
Bay of Fundy exceeds 4 m, which was reproduced by
FVCOM but significantly underestimated by ECOM-si. A
detailed discussion on tidal simulations done with FVCOM
is given in a separate paper (C. Chen et al., Tidal dynamics in
the Gulf of Maine and New England Shelf: An application of
FVCOM, in revision).
[64] The unstructured grids used in FVCOM provided a

better fit with an irregular coastline, which produced a more
accurate estimation of the water transport into BF than the
structured grid finite difference model ECOM-si. For a
given cross-bay horizontal resolution of 4 km, the tidal
elevation computed by ECOM-si was about 50 cm lower
than that observed in BF. As the horizontal resolution
increased, ECOM-si-computed tidal amplitude gradually
converged to the observational values but with an increase
in phase bias and computing load. With 2-km cross-bay
horizontal resolution, the difference in amplitude decreased
to �10–25 cm but the phase bias increased from about 2�G
to over 10�G (Figure 32).
[65] The comparison results described here are consistent

with those found in the Bohai Sea by Chen et al. [2003a],

Figure 23. Comparison of FVCOM and POM surface
current vectors at the end of the 10th model day from the
runs shown in Figure 20. The vectors for POM were plotted
at every fourth grid point.
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Figure 24. Configuration of the idealized, straight coastline continental shelf used for the freshwater
discharge case.

Figure 25. Comparison of FVCOM surface salinity at the end of the 5th model day for the cases with
‘‘specified’’ and ‘‘calculated’’ salinity at the node point of the coastal TCE where the freshwater discharge
was injected. Horizontal resolution for these experiments was 20 km (top), 1 km (middle), and 200 m
(bottom).
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who pointed out that FVCOM reproduced the near-
resonance amplitude and phase of tidal elevation in the
Bohai Sea but ECOM-si failed. These realistic applications
support our finding for the idealized cases described in
section 3.2, which show that the mismatch in coastal
geometry fitting can produce a big bias in the phase of
the tidal wave in near-resonance conditions.
[66] We also checked the tidal simulation results from

QUODDY (an unstructured grid finite element model
developed at Dartmouth College by D. Lynch and co-
workers that has been used for the Gulf of Maine in the
last 10 years). While we think that QUODDY should also
reproduce the amplitudes and phases of the M2 tide in the
GOM/GB/BF system., past studies with QUODDY pub-
lished by Lynch and Naimie [1993] did not include the upper
BF region, so no model-model-data comparisons were made
at stations in that region where the M2 elevation exceeds 3 m.
[67] Recently, Dupont et al. [2005] applied a 2-D finite

element model (MOG-2D) to simulate the tidal motion in
the upper region of BF. The MOG-2D is an unstructured
grid model developed by Carrère and Lyard [2003]. By
resolving accurately the complex geometry with a horizon-
tal resolution of 0.03–5.0 km, this unstructured grid model
reproduced the large dominant M2 tidal elevation within an
RMS error of 10% relative to the observation. Their studies

support a need for an unstructured grid model to resolve the
resonant tidal structure in BF.

4.2. Tidal-Rectified Currents on Georges Bank

[68] Observations have revealed that the nonlinear inter-
action of tidal currents over the abrupt bottom topography
of GB generates a clockwise residual current on GB
[Butman et al., 1982; Limeburner and Beardsley, 1996].
This current tends to flow eastward as a jet of �30 cm/s
on the northern flank and recirculate westward as a
relatively weak, broad current of about 1–5 cm/s on the
southern flank. Previous theoretical and numerical model-
ing studies suggest that the strong current jet formed on
the northern flank is a result of (1) nonlinear interaction of
barotropic tidal current with variable bottom topography
[Loder, 1980; Greenberg, 1983], (2) seasonal stratification
due to surface heating and intensification of the tidal mixing
front [Chen, 1992; Naimie et al. 1994; Chen et al., 1995,
2001b; Naimie, 1996], (3) nonlinear interaction between
barotropic and internal tidal currents and between internal
tidal currents [Chen and Beardsley, 1995, 1998], and (4)
upstream buoyancy-driven flow [Chapman and Beardsley,
1989; Chapman, 2003].
[69] For the same given M2 tidal forcing, both FVCOM

and ECOM-si predicted a clockwise residual circulation

Figure 26. Comparison of FVCOM and POM along-shelf currents at the end of the 5th and 10th model
days for the idealized circular lake with steep sloping shelf. In this case the initial water temperature
profile was linear in the vertical. No external and internal forcings were applied. The background mixing
was set to 10�4 m2/s. Horizontal resolution for both FVCOM and POM was 4.5 km. Contour interval is
0.1 cm/s.
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over GB (Figure 33). FVCOM showed a strong current jet
of about 20–25 cm/s flowing along the local isobaths on the
northern flank and the weakly return flow of 5–8 cm/s over
the southern flank of GB, generally consistent with obser-
vation [Butman et al., 1982] and very similar to that
predicted by QUODDY [Lynch and Naimie, 1993; Naimie
et al., 1994]. ECOM-si with a horizontal resolution of about
2.5–4 km over GB showed a significant bias in the
direction of the residual current on the bank, which resulted
in an overestimation of the cross-isobath water transport. As
the horizontal resolution in ECOM-si increased, the residual
pattern predicted by ECOM-si gradually converged to the
pattern predicted by FVCOM. This is consistent with our
assumption that all the primitive equation coastal ocean
circulation models should converge toward the same nu-
merical solution since they solve the same governing
equations. However, the speed of the convergence may
differ significantly because of the different numerical meth-
ods used in each model. For applications to regions with
complex geometry such as the GOM/GB/BF, the flexible
unstructured grid approach used in FVCOM provides faster
convergence and higher numerical efficiency than the finite
difference models considered.

4.3. Impact of the Bottom Boundary Condition on the
Stratified Residual Current

[70] The idealized circular lake experiment in section 3.4
suggests that use of the simplified bottom boundary condi-

tion @T
@s = 0 over a sloping bottom can lead to an overesti-

mate of vertical mixing and thus the buoyancy-driven
thermal boundary current over the slope. Since the bottom
boundary condition of no temperature flux in the vertical
has been widely used in coastal ocean models, it is valuable
to provide a quantitative estimation of the numerical errors
caused by this simplification for a realistic coastal ocean
domain. For this we consider GB which has steep flanks
and strong tidal mixing over its top. The temperature and
salinity fields on GB feature a tidal mixing front located
around 40-m (northern flank) and 60-m (southern flank)
isobaths and a density front at the shelf break starting at the
bottom near the 100-m isobath. Using the monthly clima-
tological temperature and salinity fields to initialize
FVCOM and M2 tidal forcing along the open boundary,
we ran two simulations, the first with no flux of temperature
and salinity in the vertical and the second with no flux of
temperature and salinity normal to the slope of the bottom
topography (10). In both cases, the horizontal diffusion Am

was estimated using the Smagorinsky eddy parameteriza-
tion method.
[71] The comparison shows that the simplified bottom

boundary condition overestimated vertical mixing over the
sloping bottom topography of the bank (Figure 34). On the
southern flank, the thickness of the bottom mixed layer was
increased to about 10–20 m and the contours of temperature
shifted offbank by about 10 km. At the shelf break, the
height of the bottom mixed layer also increased about 10–

Figure 27. Comparison of FVCOM and POM vertical velocities at the end of the 5th and 10th model
days from the runs shown in Figure 29. Contour interval is 0.4 � 10�3 cm/s.
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20 m. The 10�C contour shifted downward, about 20 m in
the vertical and 2 km in the horizontal. Similar results were
also evident in the salinity field. As a result, the spatial
structure of the along-bank stratified residual current shifted
offbank, with an increase of about 2–3 cm/s in magnitude.
The numerical experiments conducted in section 3.4 show
that the simplified bottom temperature condition will in-
crease the magnitude of upwelling in the thermal boundary
layer over the slope. This is also indirectly evident in
the current case, where the downwelling velocity near the
bottom of the slope was weaker in the case with the
simplified bottom condition of temperature and salinity than
in the case with the complete bottom condition described in
(10) and (14). The change of vertical velocity near the
bottom slope for these two cases was about 1 cm/s.
[72] Our experiments indicate that the error in velocity

caused by the simplified bottom boundary conditions for
temperature and salinity depends on both the horizontal and
vertical resolution used in the model. This can be easily
understood because assuming no flux in the vertical results
in an overestimation of vertical mixing, and hence enlarges
the horizontal density gradients and the vertical scale of the
sloping bottom boundary layer. Since numerical errors of

vertical gradients of temperature and salinity increase with a
decrease in horizontal and vertical resolution, it is without a
doubt that the impact of incorrect bottom boundary con-
ditions of temperature and salinity on numerical solutions
become more significant as numerical resolution decreases.
These errors might be much bigger than the s-coordinate
error over steep topography (e.g., near the shelf break).
Therefore they definitely cannot be ignored in model
applications to the shelf break, banks, and other regions
characterized by steep bottom topography.

5. Discussion and Conclusion

[73] Comparisons between FVCOM, POM and ECOM-si
solutions for a variety of test cases with idealized and
realistic bathymetry demonstrate that the finite volume
method used in FVCOM provides a more accurate simula-
tion than the two finite difference models in cases with
complex coastal geometry and steep bottom slopes. In
particular, the finite volume method ensures volume, mass,
and tracer conservation in the individual control volumes
and the unstructured triangular grid can be closely fit to
irregular coastlines and model domains, resulting in highly

Figure 28. Comparison of FVCOM and POM along-shelf and vertical velocities at the end of the 10th
model day between FVCOM and POM from the runs with 2.25-km horizontal resolution. Contour
interval is 0.1 cm/s for u and 0.4 � 10�3 cm/s for w.
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accurate numerical solutions in even quite complex model
geometries. With second-order accuracy, FVCOM com-
bines the advantage of a finite element method for geomet-
ric flexibility and a finite difference method for simple
discrete computation.
[74] The importance of geometric fitting on the accuracy

of numerical simulation has been examined in many previ-
ous model validation experiments for both unstructured and
structured grid cases [e.g., Haidvogel and Beckmann, 1999;
Dupont et al., 2003]. For the western boundary layer test
case, Haidvogel and Beckmann [1999] found that the
unstructured grid spectral finite element method showed
faster convergence than structured grid finite difference
methods. Dupont et al. [2003] pointed out from their studies
on the impact of a step-like coastline on the basin-scale
vorticity budget of the subtropic gyre that the rectangular
grid-induced step-like lateral boundary may have direct
impact of the accuracy of the vorticity calculation of the
gyre and that this error could not be easily suppressed by
increasing the horizontal resolution. These results support
the numerical model results presented in this text.
[75] POM and ECOM-si have been widely used in ocean

science in the last 20 years. In particular, these two models
have been successfully applied in regional and coastal ocean

studies to investigate and understand key physical processes.
The idealized model comparisons presented here and
elsewhere emphasize the importance of coastline fitting
and numerical methods when simulating flows in complex
coastal and estuarine domains. On the basis of our experi-
ence with these two finite difference models and FVCOM,
we believe that the future of coastal/estuarine modeling
should move toward unstructured grid models that provide
excellent geometric matching and improved numerical
schemes.
[76] Because of the current limitation in computational

capability, coastal modeling efforts are usually focused on a
specific coastal region surrounded by an open boundary.
This approach makes it easy to examine the response of the
coastal ocean to local forcing, but causes both limitations in
the ocean processes that can be included and numerical
difficulties in dealing with open boundary conditions. As
computer power increases, it will become feasible and
desirable to extend the global ocean model to cover the
coastal regions in more detail. The geometric flexibility
inherent in an unstructured grid model could provide a
better alternative to bridge the global and coastal ocean
models.

Appendix A: Temperature or Salinity Boundary
Condition Over a Sloping Bottom

[77] Considering bottom topography with a slope a in the
coordinate system shown in Figure A1 where n is the
direction of the horizontal gradient of the slope, the bottom
boundary condition of no heat (temperature) flux into the
slope can be written as

Kh

@T

@z
� AH

@T

@n
tana ¼ 0 ðA1Þ

where Kh and AH are the vertical and horizontal diffusivities,
respectively. This condition was first introduced in the study
of upwelling over bottom topography by Pedlosky [1974]
and suggested to be incorporated into FVCOM by Dave
Chapman (personal communication) at the Woods Hole
Oceanographic Institution.
[78] Rewriting (A1) in the s-coordinate transformation

coordinate system yields
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Figure 29. FVCOM along-shelf and vertical velocities at
the end of the 10th model day for the case with the exact
bottom boundary condition of no temperature flux into the
bottom (10). Contour interval is 0.05 cm/s for u and 0.05 �
10�3 cm/s for w.
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Figure 30. Numerical grids used for FVCOM (top) and ECOM-si (bottom). The horizontal resolution
for FVCOM is 1–2 km on the northern flank of Georges Bank and 3–4 km on the top of the bank and
10–20 km off the shelf near the open boundary. The horizontal resolution for ECOM-si is 2–3 km on
Georges Bank and 10 km off the shelf near the open boundary.
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and s = �1 at the bottom, (A3) can be rewritten as

Kh

D
þ AH

D
tan2 a

� %
@T

@s
¼ AH

@T

@n
tana: ðA5Þ

Therefore the boundary condition for temperature on a
sloping bottom is

@T

@s
¼ AHD tana

Kh þ AH tan2 a
@T

@n
: ðA6Þ

[79] Replacing T by S in (A6), we derive the bottom
boundary condition for salinity as

@S

@s
¼ AHD tana

Kh þ AH tan2 a
@S

@n
: ðA7Þ

[80] To determine the vertical gradient of temperature or
salinity at the bottom in (A6) or (A7), we need to calculate
accurately the bottom slope a and the horizontal gradient of
temperature or salinity perpendicular to the bottom @T/@n or
@S/@n. In FVCOM, a and @T/@n or @S/@n are calculated
using a simple Green’s theorem by which the area integra-
tion can be solved by the trajectory integration of the
boundary of the area.

Appendix B: Methods to Add the Discharge
From the Coast or a River

[81] FVCOM incorporates two methods to include the
freshwater discharge or tracer transport from the coastal
solid boundary. One is to inject the water into the tracer
control element (TCE) (Figure B1) and the other is to input
the water into the momentum control element (MCE)
(Figure B2). In each method, the tracer concentration (such
as salinity, temperature or others) can be either specified or
calculated through the tracer equation. The discrete expres-
sions for these two approaches are described in detail below.

B1. The TCE Method

[82] Define thatQ is the water volume transport into a TCE
with an area of Wz and a depth of D (shown in Figure B1).
The surface elevation at the coastal node in this TCE can be
calculated by

@z
@t

¼ �
I
s

vnDdsþ Q

2
4

3
5,Wz ; ðB1Þ

where vn is the velocity component normal to the boundary
line of the TCE and s is the closed trajectory of the
boundary of the TCE.
[83] The way to include Q in the continuity equation is

equivalent to adding the flux into a TCE from its coastal
boundary lines (see the heavy line shown in Figure B1).
Since this boundary line links to two momentum control
elements (MCE), the contribution of Q to the momentum in
these two elements needs to be taken into account.
[84] For the external model, defining that li and lj are half

a length of the coastal sideline of triangles with areas of Wi

and Wj, respectively, the vertically averaged x and y com-
ponents of the velocity resulting from Q are equal to

Uo ¼
Q cos q̂

D li þ lj
� 
 ;Vo ¼

Q sin q̂
D li þ lj
� 
 ðB2Þ

where q̂ is the angle of the coastline relative to the x
direction. The contributions of Q to the x and y vertically
integrated momentum equations in the MCE with an area of
Wi or Wj are given as 0.5QUo and 0.5QVo, respectively.
[85] For the internal mode, let RQk be the percentage of Q

in the kth sigma layer which satisfies the condition of

XKM�1

k¼1

RQk ¼ 1; ðB3Þ

Figure 31. Comparison between observed (top) and
model-predicted (middle and bottom) M2 tidal amplitudes
and phases in the Gulf of Maine/Georges Bank region.
Figure 31, middle: FVCOM, and bottom: ECOM-si.
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Figure 32. Model-computed distributions of the M2 tidal amplitude and phase in the Bay of Fundy (BF)
for FVCOM and ECOM-si. The horizontal resolution of FVCOM in BF ranges from 0.5 km inside inlets
to 2 km along the coast and 4 km in the interior of the bay. ECOM-si grid sizes are about 4 km in the
cross-bay direction and 8–10 km in the along-bay direction for the coarse resolution case (middle) and
about 2 km in the cross bay direction and 4–5 km in the along-bay direction for the finer resolution case
(bottom).
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where KM is the number of sigma levels in the vertical. The
transport entering the kth sigma layer in the TCE is equal to
QRQk and the x and y components of the velocity resulting
from this amount of water transport are given as

Uok ¼
QRQk cos q̂

D li þ lj
� 


Dsk

;Vok ¼
QRQk sin q̂

D li þ lj
� 


Dsk

ðB4Þ

where Dsk is the thickness of the kth sigma layer. Therefore
the contribution of QRQk to the x and y momentum equation
in the kth sigma layer of the MCE with an area of Wi or Wj

are given as 0.5QRQkUok and 0.5QRQkVok, respectively.
[86] The tracer concentration (such as salinity, tempera-

ture, or others) at the coastal node of the TCE can be either
specified or calculated. For the first case, the tracer concen-
tration at the coastal node is specified by users at each time
step, so that no calculation is needed to solve the tracer
equation for the TCE where Q is added. This method is built
on an assumption that no mixing occurs in the TCE where
the water is injected from the coast or a river. It is also the
method that is usually used in finite difference models in
studies of point source buoyancy-forced flow. The advan-
tage of this method is simplicity, however, it might cause
unrealistic buoyancy gradients near the discharge source,
especially in models with coarse horizontal resolution.
[87] For the second case, the tracer concentration at the

coastal node where Q is added is calculated directly from
the tracer equation, with an assumption that the water
injected into the system directly contributes to the tracer
transport in the TCE (where the discharge source is located)
and the tracer concentration at the coastal node of this TCE

is determined by the adjusted net tracer flux and mixing. For
example, defining Sok as the salinity in the kth sigma layer at
the coastal node of the TCE where Q is added, the salinity
equation in integral form reduces to

@SokD

@t
¼ �

I
s� liþljð Þ

vnkSkDdsþ
ZZ
Wz

Fsdxdyþ QRQkŜok

2
664

3
775
,

Wz

ðB5Þ

where vnk is the velocity component normal to the boundary
line of the TCE in the kth sigma layer, Sk is the salinity at
nodes of triangles connecting to the coastal node of the
TCE, Fs is the horizontal and vertical diffusion terms in
the salinity equation, and Ŝok is the salinity contained in
the water volume of Q.

B2. The MCE Method

[88] Let Q be the water volume transport into a MCE, q̂
the angle of the coastline relative to the x direction, and l the

Figure 33. M2 tidal residual current vectors over Georges
Bank and adjacent regions for FVCOM (top) and ECOM-si
(middle and bottom).

Figure 34. Comparison of model-predicted cross-shelf
tidally averaged temperature, salinity, along-bank current
and vertical velocity for runs with simplified (black) and
exact (red) bottom boundary conditions of temperature and
salinity. The initial fields of temperature and salinity were
specified using January climatologically averaged hydro-
graphic data. The model was driven by the M2 tidal forcing
only.
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length of the coastal boundary of the MCE (Figure B2). The
vertically averaged x and y components of the velocity
driven by Q can be estimated as

Uo ¼
Q

Dl
cos q̂;Vo ¼

Q

Dl
sin q̂: ðB6Þ

Using the same definition of RQk described in B.3, the x and
y components of the velocity in the kth sigma layer in the
MCE are given as

Uok ¼
QRQk cos q̂
DlDsk

;Vok ¼
QRQk sin q̂
DlDsk

: ðB7Þ

Therefore the contributions of the freshwater discharge to
the external x and y momentum equations of the MCE are

QUo and QVo, respectively, while the contributions to the
internal x and y momentum equations of the MCE in the
kth sigma layer are equal to QRQkUok and QRQkVok,
respectively.
[89] Because the freshwater discharge is injected in the

computational domain from a single MCE, we assume that
there is an along-coastal gradient of sea level built due to
this discharge. A simple way to satisfy this condition is to
choose the same geometric shape for two surrounding TCEs
that connected to the MCE where the freshwater input and
assume that the freshwater flows equally into these two
TCEs. Let i and j represent the two TCEs connected to the
freshwater source, then

Qi ¼ Qj ¼ Q=2: ðB8Þ

Note that this assumption is only valid when the two
surrounding TCEs have the same geometric shapes. There-
fore the surface elevation at the coastal node in ith and jth
TCEs can be calculated by

@zI
@t

¼ �
I
s

vnIDIdsþ QI

2
4

3
5,Wz

I ; ðB9Þ

where I are either i or j, and vnI is the velocity component
normal to the boundary line of the Ith TCE and s is the
closed trajectory of the boundary of this TCE.
[90] The tracer concentration (such as salinity, tempera-

ture, or others) at the coastal node of the ith or jth TCE also
can also be either specified or calculated. The method used
to include the freshwater discharge into the tracer equation
is the same as that described above in the TCE method.
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