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ABSTRACT

An unstructured grid, finite-volume, three-dimensional (3D) primitive equation ocean model has been devel-
oped for the study of coastal oceanic and estuarine circulation. The model consists of momentum, continuity,
temperature, salinity, and density equations and is closed physically and mathematically using the Mellor and
Yamada level-2.5 turbulent closure submodel. The irregular bottom slope is represented using a s-coordinate
transformation, and the horizontal grids comprise unstructured triangular cells. The finite-volume method (FVM)
used in this model combines the advantages of a finite-element method (FEM) for geometric flexibility and a
finite-difference method (FDM) for simple discrete computation. Currents, temperature, and salinity in the model
are computed in the integral form of the equations, which provides a better representation of the conservative
laws for mass, momentum, and heat in the coastal region with complex geometry. The model was applied to
the Bohai Sea, a semienclosed coastal ocean, and the Satilla River, a Georgia estuary characterized by numerous
tidal creeks and inlets. Compared with the results obtained from the finite-difference model (ECOM-si), the new
model produces a better simulation of tidal elevations and residual currents, especially around islands and tidal
creeks. Given the same initial distribution of temperature in the Bohai Sea, the FVCOM and ECOM-si models
show similar distributions of temperature and stratified tidal rectified flow in the interior region away from the
coast and islands, but FVCOM appears to provide a better simulation of temperature and currents around the
islands, barriers, and inlets with complex topography.

1. Introduction

Most of the world oceans’ inner shelves and estuaries
are characterized by a series of barrier island complexes,
inlets, and extensive intertidal salt marshes. Such an
irregular geometric ocean–estuarine system presents a
challenge for oceanographers involved in model devel-
opment even though the governing equations of oceanic
circulation are well defined and numerically solvable in
terms of discrete mathematics. Two numerical methods
have been widely used in ocean models: 1) the finite-
difference method (Blumberg and Mellor 1987; Haid-
vogel et al. 1991; Blumberg 1994) and 2) the finite-
element method (Lynch and Naimie 1993; Naimie
1996). The finite-difference method is the simplest dis-
crete scheme with an advantage of computational effi-
ciency. Introducing an orthogonal or nonorthogonal cur-
vilinear coordinate transformation into a finite-differ-
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ence model can provide a moderate fitting of coastal
boundaries, but these transformations are incapable of
resolving the highly irregular estuarine geometries char-
acteristic of numerous barrier island and tidal creek
complexes (Blumberg 1994; Chen et al. 2001; Chen et
al. 2002, manuscript submitted to J. Great Lakes Res.).
The greatest advantage of the finite-element method is
its geometric flexibility. Triangular meshes at an arbi-
trary size are used in this method and can provide an
accurate fitting of the irregular coastal boundary. The
P-type finite-element method (Maday and Patera 1989)
or discontinuous Galerkin method (Reed and Hill 1973;
Cockburn et al. 1990) has been introduced into the up-
dated finite-element model to help improve computa-
tional accuracy and efficiency.

Recently, the finite-volume method has received con-
siderable attention in the numerical computation of fluid
dynamics (Dick 1994). The dynamics of oceanography
comply with conservation laws. The governing equa-
tions of oceanic motion and water masses are expressed
by the conservation of momentum, mass, and energy in
a unit volume. When the equations are solved numer-
ically, these laws cannot always be guaranteed, espe-
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cially in situations with sharp thermoclines or discon-
tinuous flow. Unlike the differential form, the finite-
volume method discretizes the integral form of the equa-
tions, making it easier to comply with the conservation
laws. Since these integral equations can be solved nu-
merically by the flux calculation used in the finite-dif-
ference method over an arbitrarily sized triangular mesh
(like those in a finite-element method), the finite-volume
method seems to combine the best attributes of the fi-
nite-difference method (for simple discrete computa-
tional efficiency) and the finite-element method (for
geometric flexibility).

To our knowledge, a three-dimensional (3D), unstruc-
tured grid, prognostic, primitive equation, finite-volume
ocean circulation model is not currently available in the
oceanographic community, although some efforts have
been made to develop a finite-volume formulation of
the two-dimensional, barotropic shallow water equa-
tions (Ward 2000). The MIT General Circulation model
developed by Marshall et al. (1997a,b) is the first 3D
finite-volume ocean model. However, since this model
currently relies on rectangular structure grids for hori-
zontal discretization, it is not suited to use for coastal
ocean and estuarine domains with complicated geom-
etries. Recently, we have developed a 3D unstructured
grid, finite-volume coastal ocean model (called
FVCOM). This new model has been applied to the Bohai
Sea, a semienclosed coastal ocean, and the Satilla River,
a Georgia estuary characterized by numerous tidal
creeks and inlets. Compared with results obtained from
a well-developed finite-difference model (called
ECOM-si) and observational data, we find that the fi-
nite-volume model provides a better simulation of tidal
elevations and residual currents, especially around is-
lands and tidal creeks. Both FVCOM and ECOM-si
show similar distributions of temperature and stratified
tidal rectified and buoyancy-induced flows in the interior
region in the Bohai Sea, but FVCOM seems to resolve
the detailed thermal structure and flows around islands
and complex coastal regions.

The remaining sections of this paper are organized
as follows. The model formulation, design of unstruc-
tured grids, and discretization procedure are described
in sections 2, 3, and 4, respectively. The model appli-
cations for the Bohai Sea and Satilla River are given
and discussed in section 5, and a summary is provided
in section 6. Detailed expressions for the numerical
computation of individual terms in the momentum equa-
tion are given in an appendix.

2. The model formulation

a. The primitive equations

The governing equations consist of the following mo-
mentum, continuity, temperature, salinity, and density
equations:

]u ]u ]u ]u
1 u 1 y 1 w 2 f y

]t ]x ]y ]z

1 ]P ] ]u
5 2 1 K 1 F , (2.1)m u1 2r ]x ]z ]zo
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]t ]x ]y ]z

1 ]P ] ]y
5 2 1 K 1 F , (2.2)m y1 2r ]y ]z ]zo
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5 2rg, (2.3)
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]u ]y ]w
1 1 5 0, (2.4)

]x ]y ]z

]u ]u ]u ]u
1 u 1 y 1 w

]t ]x ]y ]z

] ]u
5 K 1 F , (2.5)h u1 2]z ]z

]s ]s ]s ]s
1 u 1 y 1 w

]t ]x ]y ]z

] ]s
5 K 1 F , (2.6)h s1 2]z ]z

r 5 r(u, s), (2.7)

where x, y, and z are the east, north, and vertical axes
of the Cartesian coordinate; u, y, and w are the x, y, z
velocity components; u is the potential temperature; s
is the salinity; r is the density; P is the pressure; f is
the Coriolis parameter; g is the gravitational accelera-
tion; Km is the vertical eddy viscosity coefficient; and
Kh is the thermal vertical eddy diffusion coefficient.
Here Fu, Fy , Fu, and Fs represent the horizontal mo-
mentum, thermal, and salt diffusion terms.

Here Km and Kh are parameterized using the Mellor
and Yamada (1982) level-2.5 (MY-2.5) turbulent closure
scheme as modified by Galperin et al. (1988). In the
boundary layer approximation where the shear produc-
tion of turbulent kinetic energy is produced by the ver-
tical shear of the horizontal flow near the boundary, the
equations for q2 and q2l can be simplified as

2 2 2 2]q ]q ]q ]q
1 u 1 y 1 w

]t ]x ]y ]z

2] ]q
5 2(P 1 P 2 «) 1 K 1 F , (2.8)s b q q1 2]z ]z
2 2 2 2]q l ]q l ]q l ]q l

1 u 1 y 1 w
]t ]x ]y ]z

2W̃ ] ]q l
5 lE P 1 P 2 « 1 K 1 F , (2.9)1 s b q l1 2 1 2E ]z ]z1
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where q2 5 (u92 1 y92)/2 is the turbulent kinetic energy;
l is the turbulent macroscale; Kq is the vertical eddy
diffusion coefficient of the turbulent kinetic energy; Fq

and Fl represent the horizontal diffusion of the turbulent
kinetic energy and macroscale; Ps 5 Km( 1 ) and2 2u yz z

Pb 5 (gKhrz)/ro are the shear and buoyancy production
terms of turbulent kinetic energy; « 5 q3/B1l is the
turbulent kinetic energy dissipation rate; W 5 1 1 E2l2/
(kL)2 is a wall proximity function, where L21 5 (z 2
z)21 1 (H 1 z)21; k 5 0.4 is the von Kármán constant;
H is the mean water depth; and z is the free surface
elevation. In general, Fq and Fl are kept as small as
possible to reduce the effects of horizontal diffusion on
the solutions.

The turbulent kinetic energy and macroscale equa-
tions are closed by defining

K 5 lqS , K 5 lqS , K 5 0.2lq. (2.10)m m h h q

The stability functions Sm and Sh are defined as

0.4275 2 3.354GhS 5 andm (1 2 34.676G )(1 2 6.127G )h h

0.494
S 5 , (2.11)h 1 2 34.676Gh

where Gh 5 (l 2 g/q 2 ro )r z . In the original MY level-
2.5 turbulent closure model (Mellor and Yamada
1974, 1982), Sm and Sh are functions of the gradient
Richardson number. By removing a slight inconsis-
tency in the scaling analysis, Galperin et al. (1988)
simplified the MY turbulent closure model so that Sm

and Sh depend only on Gh . Here Gh has an upper
bound of 0.023 for the case of unstable (r z . 0) strat-
ification and a lower bound of 20.28 for the case of
stable (r z , 0) stratification. Parameters A1 , A 2 , B1 ,
B 2 , and C1 are given as 0.92, 16.6, 0.74, 10.1, and
0.08, respectively.

The surface and bottom boundary conditions for u,
y , and w are

]u ]y 1
K , 5 (t , t ),m sx sy1 2]z ]z ro

]z ]z ]z
w 5 1 u 1 y ,

]t ]x ]y

at z 5 z(x, y, t), and (2.12)

]u ]y 1
K , 5 (t , t ),m bx by1 2]z ]z ro

]H ]H
w 5 2u 2 y ,

]x ]y

at z 5 2H (x, y), (2.13)

where (t sx , t sy ) and (t bx , t by ) 5 Cd (u, y )2 2Ïu 1 y
are the x and y components of surface wind and bot-
tom stresses; D 5 H 1 z. The drag coefficient Cd is

determined by matching a logarithmic bottom layer
to the model at a height zab above the bottom; that is,

 2k C 5 max , 0.0025 , (2.14)d 2 zabln 1 2zo 

where k 5 0.4 is the von Kármán’s constant and zo is
the bottom roughness parameter.

The surface and bottom boundary conditions for tem-
perature are

]u 1
5 [Q (x, y, t) 2 SW(x, y, z, t)],n]z rc Kp h

at z 5 z(x, y, t), (2.15)

]u
5 0, at z 5 2H(x, y), (2.16)

]z

where Qn (x, y, t) is the surface net heat flux, which
consists of four components: downward shortwave
and longwave radiation, and sensible and latent flux-
es; SW(x, y, 0, t) is the shortwave flux incident at sea
surface; and cp is the specific heat of seawater. The
longwave radiation, and sensible and latent heat fluxes
are assumed here to occur at the ocean surface, while
the downward shortwave flux SW(x, y, z, t) is ap-
proximated by

SW(x, y, z, t)
z /a z /b5 SW(x, y, 0, t)[Re 1 (1 2 R)e ], (2.17)

where a and b are attenuation lengths for longer and
shorter (blue-green) wavelength components of the
shortwave irradiance, and R is the percent of the total
flux associated with the longer wavelength irradiance.
This absorption profile, first suggested by Kraus
(1972), has been used in numerical studies of upper-
ocean diurnal heating by Simpson and Dickey
(1981a,b) and others. The absorption of downward
irradiance is included in the temperature (heat) equa-
tion in the form of

]SW(x, y, z, t)
Ĥ(x, y, z, t) 5

]z

SW(x, y, 0, t) R 1 2 R
z /a z /b5 e 1 e . (2.18)1 2rc a bp

This approach leads to a more accurate prediction of
near-surface temperature than the flux formulation based
on a single wavelength approximation (Chen et al.
2002).

The surface and bottom boundary conditions for sa-
linity are
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ˆ ˆ]s s(P 2 E )
5 at z 5 z(x, y, t) and

]z K rh

]s
5 0 at z 5 2H(x, y), (2.19)

]z

where P̂ and Ê are precipitation and evaporation rates,
respectively. Note that a groundwater flux can be easily
added into the model by modifying the bottom boundary
conditions for vertical velocity and salinity.

The surface and bottom boundary conditions for the
turbulent kinetic energy and macroscale equations are

2 2 2/3 2q l 5 0, q 5 B u at z 5 z(x, y, t), (2.20)1 ts

2 2 2/3 2q l 5 0, q 5 B u at z 5 2H(x, y), (2.21)1 tb

where uts and utb are the friction velocities associated
with the surface and bottom stresses.

The kinematic and heat and salt conditions on the
solid boundary are specified as

]u ]s
y 5 0; 5 0; 5 0, (2.22)n ]n ]n

where y n is the velocity component normal to the bound-
ary, and n is the coordinate normal to the boundary.

b. The governing equations in the s coordinate

The s-coordinate transformation is used in the ver-
tical in order to obtain a smooth representation of ir-
regular bottom topography. The s-coordinate transfor-
mation is defined as

z 2 z z 2 z
s 5 5 , (2.23)

H 1 z D

where s varies from 21 at the bottom to 0 at the surface.
In this coordinate, equations (2.1)–(2.9) are given as

02]uD ]u D ]uyD ]uv ]z gD ] ]D
1 1 1 2 f yD 5 2gD 2 D r ds9 1 srE1 2[ ]]t ]x ]y ]s ]x r ]x ]xo s

1 ] ]u
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02]yD ]uyD ]y D ]yv ]z gD ] ]D
1 1 1 1 fuD 5 2gD 2 D r ds9 1 srE1 2[ ]]t ]x ]y ]s ]y r ]y ]yo s

1 ] ]y
1 K 1 DF , (2.25)m y1 2D ]s ]s

]uD ]uuD ]uyD ]uv 1 ] ]u ˆ1 1 1 5 K 1 DH 1 DF , (2.26)h u1 2]t ]x ]y ]s D ]s ]s
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1 1 1 5 K 1 DF , (2.27)h s1 2]t ]x ]y ]s D ]s ]s

2 2 2 2 2]q D ]q uD ]q yD ]q v 1 ] ]q
1 1 1 5 2D(P 1 P 2 «) 1 K 1 DF , (2.28)s b q q1 2]t ]x ]y ]s D ]s ]s

2 2 2 2 2˜]q lD ]q luD ]q lyD v ]q lv W 1 ] ]q l
1 1 1 5 lE D P 1 P 2 « 1 K 1 DF , (2.29)1 s b q 11 2 1 2]t ]x ]y D ]s E D ]s ]s1

r 5 r(u, s). (2.30)

The horizontal diffusion terms are defined as

] ]u ] ]u ]y
DF ø 2A H 1 A H 1 , (2.32)x m m 1 2[ ] [ ]]x ]x ]y ]y ]x

] ]u ]y ] ]y
DF ø A H 1 1 2A H , (2.33)y m m1 2[ ] [ ]]x ]y ]x ]y ]y

D(F , F , F , F )2 2u s q q l

] ] ] ]
2 2ø A H 1 A H (u, s, q , q l), (2.34)h h1 2 1 2[ ]]x ]x ]y ]y

where Am and Ah are the horizontal eddy and thermal
diffusion coefficients, respectively. Following the finite-
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difference primitive equation coastal ocean models
(called POM and ECOM-si) developed originally by
Blumberg and Mellor (1987), this definition ensures the
validity of the bottom boundary layer simulation in the
s-coordinate transformation system. The detailed de-
scription was given in Mellor and Blumberg (1985).

The boundary conditions are given as follows. At the
surface where s 5 0,

]u ]y D
, 5 (t , t ), v 5 0,sx sy1 2]s ]s r Ko m

]u D
5 [Q (x, y, t) 2 SW(x, y, 0, t)],n]s rc Kp h

]s s(P 2 E )D
25 2 , q l 5 0,

]s Kh

2 2/3 2q 5 B u , (2.35)1 ts

and at the bottom where s 5 21

]u ]y D
, 5 (t , t ), v 5 0,bx by1 2]s ]s r Ko m

]u ]s
25 5 0, q l 5 0,

]s ]s

2 2/3 2q 5 B u . (2.36)1 tb

c. The 2D (vertically integrated) equations

The sea surface elevation included in the equations
describes the fast-moving surface gravity waves. In the
explicit numerical approach, the criterion for the time
step is inversely proportional to the phase speed of these
waves. Since the sea surface elevation is proportional
to the gradient of water transport, it can be computed
using vertically integrated equations. The 3D equations
then can be solved under conditions with a given sea
surface elevation. In this numerical method, called
‘‘mode splitting,’’ the currents are divided into external
and internal modes that can be computed using two
distinct time steps. This approach is used successfully
in POM.

Recently, a semi-implicit scheme was introduced into
POM, in which the sea surface elevation was computed
implicitly using a preconditioned conjugate gradient
method with no sacrifice in computational time (Casulli
and Cheng 1991). This updated version of POM is called
ECOM-si. The semi-implicit scheme cannot easily be
applied to a finite-volume model since it is difficult to
construct a linear positive symmetric algebraic matrix
when unstructured triangular meshes are used. For this
reason, we select the mode-splitting method to solve the
momentum equations.

The 2D (vertically integrated) momentum and con-
tinuity equations are given as

]z ](uD) ](y D)
1 1 5 0, (2.37)

]t ]x ]y

0 0 02]uD ]u D ]uy D ]z gD ] ]D
1 1 2 f y D 5 2gD 2 D r ds9 ds 1 sr dsE E E5 1 2 6]t ]x ]y ]x r ]x ]xo 21 s 21

] 2 tsx bx ˜1 1 DF 1 G , (2.38)x xro

0 0 02]y D ]uy D ]y D ]z gD ] ]D
1 1 1 f uD 5 2gD 2 D r ds9 ds 1 sr dsE E E5 1 2 6]t ]x ]y ]y r ]y ]yo 21 s 21

t 2 tsy by ˜1 1 DF 1 G , (2.39)y yro

where Gx and Gy are defined as

2]u D ]uy D ˜G 5 1 2 DFx x]x ]y

2]u D ]uy D
2 1 2 DF , (2.40)x[ ]]x ]y

2]uy D ]y D ˜G 5 1 2 DFy y]x ]y

2]uy D ]y D
2 1 2 DF , (2.41)y[ ]]x ]y

and the horizontal diffusion terms are approximately
given as
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FIG. 1. The unstructured grid for the finite-volume model.

] ]u ] ]u ]y˜DF ø 2A H 1 A H 1 , (2.42)x m m 1 2[ ] [ ]]x ]x ]y ]y ]x

] ]u ]y ] ]y˜DF ø A H 1 1 2A H , (2.43)y m m1 2[ ] [ ]]x ]y ]x ]y ]y

] ]u ] ]u ]y
DF ø 2A H 1 A H 1 , (2.44)x m m 1 2]x ]x ]y ]y ]x

] ]u ]y ] ]y
DF ø A H 1 1 2A H . (2.45)y m m1 2]x ]y ]x ]y ]y

The overbar ‘‘ ’’ denotes the vertically integration. For
example, for a given variable c,

0

c 5 c ds. (2.46)E
21

3. Design of the unstructured grids

Similar to the finite-element method, the horizontal
numerical computational domain is subdivided into a
set of nonoverlapping unstructured triangular cells. An
unstructured triangle comprises three nodes, a centroid,
and three sides (Fig. 1). Let N and M be the total number
of centroids and nodes in the computational domain,
respectively, then the locations of centroids can be ex-
pressed as

[X(i), Y(i)], i 5 1:N; (3.1)

and the locations of nodes can be specified as

[X ( j ), Y ( j )], j 5 1:M.n n (3.2)

Since none of the triangles in the grid overlap, N should
also be the total number of unstructured triangles. On
each triangle cell, the three nodes are identified using
integral numbers defined as Ni( ĵ ), where ĵ is counted
clockwise from 1 to 3. The surrounding triangles that
have a common side are counted using integral numbers
defined as NBEi( ĵ ), where ĵ is counted clockwise from
1 to 3. At open or coastal solid boundaries, NBEi( ĵ ) is
specified as zero. At each node, the total number of the
surrounding triangles with a connection to this node is
expressed as NT( j ), and they are counted using integral
numbers NBi(m), where m is counted clockwise from 1
to NT( j ).

To provide a more accurate estimation of the sea sur-
face elevation, currents, and salt and temperature fluxes,
the numerical computation is conducted in a specially
designed triangular grid in which z, v, s, u, r, q2, q2l,
H, D, Km, Kh, Am, and Ah are placed at nodes, and u, y
are placed at centroids. Variables at each node are de-
termined by a net flux through the sections linked to
centroids in the surrounding triangles with connection
to that node. Variables at centroids are calculated based
on a net flux through three sides of that triangle. The
numerical code was written using Fortran 77 and can
be run on a PC or workstation with Fortran 77 or above.

4. The discretization procedure

a. The 2D external mode

Let us consider the continuity equation first. Inte-
grating Eq. (2.37) over a given triangle area yields
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FIG. 2. Geometry of the Bohai Sea. Filled dots with numbers 1–32 shown along the coast are tidal measurement
stations. Two heavy solid lines and filled triangles are the sections and site used for model comparisons.

]z ](uD) ](y D)
dx dy 5 2 1 dx dyEE EE [ ]]t ]x ]x

5 2 y D ds9, (4.1)nR
s9

where n is the velocity component normal to the sidesy
of the triangle and s9 is the closed trajectory that com-
prises the three sides. Equation (4.1) is integrated nu-
merically using the modified fourth-order Runge–Kutta
time-stepping scheme. This is a modified multistage
time-stepping approach with second-order accuracy
(Dick 1994). The detailed procedure for this method is
described as follows:

0 nz 5 z ,j j

NT( j )
n n0 n nR 5 R 5 [(Dx y 2 Dy u )DOz z 2m21 m 2m21 m 2m21

m51

n n n1 (Dx y 2 Dy u )D ], (4.2)2m m 2m m 2m

k21DtRzk 0 k n11 4z 5 z 2 a , and z 5 z , (4.3)j j j jz2Vj

where k 5 1, 2, 3, 4 and (a1, a2, a3, a4) 5 (1/4, 1/3,
1/2, 1). Superscript n represents the nth time step. Here

is the area enclosed by the lines through centroidszVj

and midpoints of side of surrounding triangles con-
nected to the node where z j is located. Also , andnu m

are defined asny m
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FIG. 3. Geometry of the Satilla River. Water depth contours are in meters. Filled dots are seven
bottom pressure measurement sites conducted by Dr. Blanton at Skidaway Institute of Ocean-
ography, Savannah, GA.

n nn nu 5 u[NT(m)] , y 5 y[NT(m)] . (4.4)m m

The time step for the external mode is Dt and

Dx 5 x 2 x , Dx 5 x 2 x , (4.5)2m21 2m 2m21 2m 2m11 2m

Dy 5 y 2 y , Dy 5 y 2 y . (4.6)2m21 2m 2m21 2m 2m11 2m

Similarly, integrating Eqs. (2.38) and (2.39) over a given
triangle area, we get

]uD ]z
dx dy 5 2 uDy ds9 1 f y D dx dy 2 gD dx dyEE n EE EER]t ]x

s9

0 0 02gD ] ]r s ]D
2 r ds 2 ds ds dx dyEE E E E5 6[ ]r ]x ]s D ]xo 21 s s

t 2 tsx bx ˜1 dx dy 1 DF dx dy 1 G dx dy, (4.7)EE EE x EE xro

]y D ]z
dx dy 5 2 y Dy ds9 2 f uD dx dy 2 gD dx dyEE R n EE EE

s9]t ]y

0 0 02gD ] ]r s ]D
2 r ds 2 ds ds dx dyEE E E E5 6[ ]r ]y ]s D ]yo 21 s s

t 2 tsy by ˜1 dx dy 1 DF dx dy 1 G dx dy. (4.8)EE EE y EE yro
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FIG. 4. Unstructured and curvilinear grids of the Bohai Sea for FVCOM and ECOM-si.
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FIG. 5. The charts of model-predicted coamplitudes and cophases of the M2 and S2 tides in the Bohai Sea. (right)
ECOM-si and (left) FVCOM.

Equations (4.7) and (4.8) are also integrated numerically
using the modified fourth-order Runge–Kutta time-step-
ping scheme as follows:

0 n0 n 0 nu 5 u , y 5 y , R 5 R ,i i i i u u
0 n

R 5 R , (4.9)y y
0

DtRuk 0 ku 5 u 2 a ,i i u4V Di i
0

DtRyk 0 ky 5 y 2 a , (4.10)i i y4V Di i

n11 4 n11 4u 5 u , y 5 y , (4.11)i i i i

where the definitions of k and ak are the same as those
shown in Eq. (4.3). Here and are the triangleu yV Vi i

areas where and are located. In the grids used inu y
this model, and are all at the centroid, so that uu y Vi

5 5 Vi. The depth i is at the centroid, which isyV Di

interpolated from depth values at three nodes. Here
and represent all the terms on the right of Eqs.

n n
R Ru y

(4.7) and (4.8), respectively. They are equal to

n
R 5 ADVU 1 DPBPX 1 DPBCX 1 CORXu

1 VISCX 2 G , (4.12)x
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FIG. 6. The charts of model-predicted coamplitudes and cophases of the K1 and O1 tides in the Bohai Sea. (right)
ECOM-si and (left) FVCOM.

n
R 5 ADVV 1 DPBPY 1 DPBCY 1 CORYy

1 VISCY 2 G , (4.13)y

where ADVU and ADVV, DPBPX and DPBPY, DPBCX
and DPBCY, CORX and CORY, VISCX and VISCY are
the x and y components of vertically integrated hori-
zontal advection, barotropic pressure gradient force,
Coriolis force, and horizontal diffusion terms, respec-
tively. The definitions of Gx and Gy are the same as
those shown in Eqs. (2.40) and (2.41). The numerical
approach for these terms is given in the appendix.

b. The 3D internal mode

The momentum equations are solved numerically us-
ing a simple combined explicit and implicit scheme in
which the local change of the currents is integrated using
the first-order accuracy upwind scheme. The advection
terms are computed explicitly by a second-order ac-
curacy Runge–Kutta time-stepping scheme is also in-
corporated in the updated version to increase the nu-
merical integration to second-order accuracy. The pro-
cedure for this method is very similar to that described
above for the 2D external mode. To provide a simple
interpretation of the numerical approach for the 3D in-
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FIG. 7. Distributions of (a) FVCOM and (b) ECOM-si predicted
surface residual current vectors around the islands close to the Bohai
Sea Strait.

FIG. 8. Distributions of model-predicted near-surface (1/2 s-level
below the surface) temperature averaged over a M2 tidal cycle of the
10th model day. (top) FVCOM and (bottom) ECOM-si.

ternal mode, we focus our description here only on the
first-order accuracy upwind scheme. It should be noted
here that the second-order accuracy Runge–Kutta time-
stepping scheme is also incorporated in the model.

The 3D momentum equations can be rewritten as

]uD 1 ] ]u
1 R 5 K ,u m1 2]t D ]s ]s

]yD 1 ] ]y
1 R 5 K , (4.14)y m1 2]t D ]s ]s

where

R 5 ADVU3 1 CORX3 1 DPBPX3u

1 BPBCX3 1 HVISCX, (4.15)

R 5 ADVV3 1 CORY3 1 DPBPY3y

1 BPBCY3 1 HVISCY. (4.16)

The numerical integration is conducted in two steps. In
the first step, the ‘‘transition’’ velocity is calculated using
all the terms except the vertical diffusion term in the mo-
mentum equations. Then the true velocity is determined
implicitly using a balance between the local change of the
‘‘transition’’ velocity and the vertical diffusion term.

Let and be the x and y components of theu* y*i,k i,k

‘‘transition’’ velocity at the midpoint between the k and
k 1 1 s-levels in triangular cell i. They can be deter-
mined numerically as follows:

DtIn nu* 5 u 2 R ,i,k i,k u,(i,k)V DsDi i

DtIn ny* 5 y 2 R , (4.17)i,k i,k y ,(i,k)V DsDi i
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FIG. 9. Vertical distributions of temperature averaged over a M2 tidal cycle of the 10th model day on cross-sea
sections 1 and 2. (right) ECOM-si and (left) FVCOM.

where Ds 5 sk 2 sk11, and DtI is the time step for the
internal mode. The numerical approach for computing

and is described in detail in the appendix.n nR Ru,(i,k) y ,(i,k)

After the transition velocity is determined, the true
velocity ( and ) at the (n 1 1)th time step cann11 n11u yi,k i,k

be found by solving the following discrete equation:

n11 n11 n11A u 1 B u 1 C u 5 u* , (4.18)i,k i,k11 i,k i,k i,k i,k21 i,k

n11 n11 n11A y 1 B y 1 C y 5 y* , (4.19)i,k i,k11 i,k i,k i,k i,k21 i,k

where

2K (k 1 1)DtmA 5 2 ,i,k n11 2[D ] (s 2 s )(s 2 s )k k11 k k12

2K (k)DtmC 5 2 ,i,k n11 2[D ] (s 2 s )(s 2 s )k k11 k21 k11

B 5 1 2 A 2 C . (4.20)i,k i,k i,k

Equations (4.18) and (4.19) are tridiagonal equations,
which can be solved easily for given surface and bottom
boundary conditions.

A similar numerical approach is also used to solve
the equations for u, s, q2, and q2l. For example, the
temperature equation can be rewritten as

]uD 1 ] ]u
1 R 5 K , (4.21)u h1 2]t D ]s ]s

where
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FIG. 10. Time series of model-predicted temperature at the surface
(1/2 s level below the surface), middle-depth, and bottom (1/2 s
level above the bottom) at selected sites I and II (shown in Fig. 2)
in the Bohai Sea. Solid line: FVCOM; dashed line: ECOM-si.

]uuD ]uyD ]uvD ˆR 5 1 1 2 DH 2 DF . (4.22)u u]x ]y ]s

Equation (4.21) is identical to the equations for u and
y in Eq. (4.14) if u or y is replaced by u, Ru or Ry by
Ru, and Km by Ku. The only difference is that u is cal-
culated at nodes and has the same control volume as
that used for z. To apply a second-order upwind scheme
for the temperature advection term, we used Green’s
theorem to calculate the temperature gradient at nodes
(Barth 1993; Wu and Bogy 2000). Computing u at nodes
has shown a significant improvement in the advective
temperature flux over steep bottom topography. A de-
tailed discussion about this issue will be given in a
separate manuscript. The detailed description of the nu-
merical approach for Eq. (4.21) is given in the appendix.

5. Model applications

To test our new unstructured grid, finite-volume,
ocean circulation model, we applied it to the Bohai Sea
around the northern coast of China and the Satilla River
in the inner shelf of the South Atlantic Bight. The Bohai
Sea is a semienclosed coastal ocean that includes mul-
tiple islands and coastal inlets (Fig. 2). The mean depth
of the Bohai is about 20 m, with the deepest region of
about 70 m located near the northern coast of the Bohai
Strait. The Satilla River is a typical estuary character-
ized by complex curved coastlines, multiple tidal creeks
and inlets (Fig. 3). The mean depth of this river is about
4 m, with the deepest region being about 20 m near the
river mouth.

In the Bohai Sea, the motion is dominated by semi-
diurnal (M2 and S2) and diurnal (K1 and O1) tides, which
account for about 60% of the current variation and ki-
netic energy there. Since the tidally rectified residual
flow is only substantial near the coast and islands in the
Bohai Sea, geometric fitting is essential to providing a
more accurate simulation of the tidal waves and residual
flow. The Bohai Sea is connected to the Yellow Sea (on
the south) through the Bohai Strait. Several islands lo-
cated in the Strait complicate the water exchange be-
tween these two seas. Failing to resolve these islands
leads to an underestimation of water transport through
the strait. It also results in an unrealistic distribution of
the tidal motion in the Bohai Sea due to alterations in
the propagation paths of tidal waves. In addition, in the
Bohai Sea, the tidally rectified residual flow is usually
one order of magnitude smaller than the buoyancy- and
wind-induced flows, except near the coast and around
islands. In order to obtain a more accurate simulation
of temperature and salinity, the model must be able to
resolve the complex topography near the coast and
around islands.

In the Satilla River, the M2 tidal current accounts for
about 90% of the along-river current variation (Blanton
1996). Tidal advection and mixing also are the main
physical processes controlling the spatial and temporal

variations of biological and chemical materials in this
estuary (Bigham 1973; Dunstan and Atkinson 1976;
Pomeroy et al. 1993; Verity et al. 1993; Zheng and Chen
2000). Since the Satilla River estuary features numerous
tidal creeks, failing to resolve these creeks would lead
to under- or overestimating the tidally rectified flow.
This in turn would cause water transport in the river to
be miscalculated. This can be seen clearly in the com-
parison between the finite-difference and finite-volume
model results of the Satilla River given below.

a. The Bohai Sea

The finite-difference model used in this comparison
is ECOM-si, which is an updated version of POM. The
model domains for FVCOM and ECOM-si are shown
in Fig. 4, both of which have their open boundaries in
the Yellow Sea about 150 km south of the Bohai Strait.
In FVCOM, the horizontal resolution is about 2.6 km
around the coast and about 15–20 km in the interior and
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FIG. 11. Unstructured and curvilinear grids of the Satilla River for
FVCOM and ECOM-si.

FIG. 12. Comparison between model-predicted (FVCOM and
ECOM-si) and observed amplitudes of M2 tidal elevation at seven
measurement sites shown in Fig. 3.

FIG. 13. Distributions of the near-surface M2 tidal currents at the
maximum flood tide. (top) FVCOM and (bottom) ECOM-si.

near the open boundary. In ECOM-si, a uniform hori-
zontal resolution of about 2 km is used in most of the
computational areas except near the open boundary
where the horizontal resolution is about 7 km. In the
vertical, both FVCOM and ECOM-si models comprise
ten uniformly distributed s layers, which result in a
vertical resolution of about 0.1–1.0 m in the coastal
region shallower than 10 m, and about 6 m at the 60-
m isobath. The models were driven using the same semi-
diurnal (M2 and S2) and diurnal (O1 and K1) tidal el-
evations and phases at the open boundary. The sea level
data used for tidal forcing were interpolated directly
from our East China/Yellow Seas model and adjusted
according to previous tidal measurements at the northern
and southern coasts. To examine each model’s capability
of simulating buoyancy-induced currents, we ran both
models prognostically using the same initial stratifica-
tion. The initial temperature was specified as a vertical
linear function with 258C at the surface and 158C at a
depth of 75 m. The salinity was specified as a constant

value of 30 psu. The time step was 186.3 s, which cor-
responded to 240 time steps over the M2 tidal cycle.

The model-predicted time series of surface elevation
and currents at each grid point was fitted by a least
squares harmonic analysis method. The resulting coam-
plitude and cophase of each tidal constituent are shown
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FIG. 14. Distributions of the near-surface M2 tidal currents at the
maximum ebb tide. (top) FVCOM and (bottom) ECOM-si.

FIG. 15. Distribution of model-predicted surface residual current
vectors in the selected area of the Satilla River. (top) FVCOM and
(bottom) ECOM-si.

in Figs. 5 and 6. The model–data comparisons of tidal
amplitudes and phases at tidal measurement stations are
given in Tables 1–4. Although both FVCOM and
ECOM-si show that M2 and S2 tidal waves propagate
counterclockwise around the coast like a Kelvin wave,
the distributions of tidal amplitudes and phases pre-
dicted by these two models differ significantly. FVCOM
predicts two nodes of the M2 and S2 tides in the Bohai
Sea: one is near the mouth of the Yellow River on the
southwestern coast, and the other is located offshore of
Qinhuangdao on the northwestern coast. These two
nodes, however, shift onshore in the case of the ECOM-
si, especially for the M2 tide. The FVCOM-predicted
maximum amplitudes of the M2 and S2 tides are about
130 cm in Liaodong Bay and 100 cm in Bohai Bay,
both of which are about 10–20 cm higher than those
predicted by the ECOM-si. Both FVCOM and ECOM-
si show similar structures for the K1 and O1 tides, but
the model-predicted amplitude of the K1 tide is higher
in the case with FVCOM than in the case with ECOM-
si.

The comparison between observed and model-pre-
dicted amplitudes and phases of semidiurnal tides at
tidal measurement stations around the Bohai Sea shows
a better agreement in the case with FVCOM than in the
case with ECOM-si, especially for the M2 tidal con-

stituent in Bohai Bay and Liaodong Bay. The standard
deviation for the M2 and S2 tidal simulations is 6.0 and
5.8 cm in amplitude and 18.98 and 29.98 in phase, re-
spectively, in the case with FVCOM. However, they are
16.6 and 5.9 cm in amplitude and 41.28 and 42.98 in
phase in the case with ECOM-si (Tables 1 and 2). The
FVCOM is more capable of predicting the amplitude
and phase of semidiurnal tides in Liaodong Bay and
Bohai Bay than ECOM-si. However, no significant dif-
ferences are found for the K1 and O1 tides in both the
FVCOM and ECOM-si models (Tables 3 and 4).

Both FVCOM and ECOM-si predict relatively weak
tidally rectified residual currents in the Bohai Sea except
near the coast and around islands. In the Bohai Strait,
for example, the FVCOM model shows multiple around-
island residual flow patterns. These patterns are not well
predicted by the ECOM-si model because of poor res-
olution around the islands (Fig. 7). Although both
FVCOM and ECOM-si models show an eastward re-
sidual flow along the southern coast in the Bohai Sea,
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TABLE 1. Model–data comparison of the M2 tidal amplitude and phase in the Bohai Sea.

Stations

Amplitude (cm)

zo

FVCOM

zc Dz

ECOM-si

zc Dz

Phase (8G)

fo

FVCOM

fc Df

ECOM-si

fc Dd

1
2
3
4
5

88.0
83.0
59.0
61.0
54.0

89.2
80.5
53.0
57.6
55.1

21.2
2.5
6.0
3.4

21.1

83.3
79.9
54.5
60.4
56.5

4.7
3.1
4.5
0.6

2.2.5

294.0
300.0
350.0

11.0
82.0

293.7
301.8
351.6

9.6
82.7

0.3
21.8
21.6

1.4
20.7

294.3
300.8
350.3

14.8
77.5

20.3
20.8
20.3
23.8

4.5
6
7
8
9

10

71.0
120.0
116.0

96.0
42.0

73.3
122.8
124.9
106.3

40.1

22.3
22.8
28.9

210.3
1.9

68.1
112.3
107.3

82.3
49.2

2.9
7.8
8.7

13.7
27.2

112.0
125.0
145.0
150.0
153.0

101.7
125.9
145.9
155.7
164.3

10.3
20.9
20.9
25.7
21.3

96.1
120.8
143.5
149.1
153.5

15.9
4.2
1.5
0.9

20.5
11
12
13
14
15

25.0
13.0
12.0

5.0
11.0

28.0
20.9
15.6
11.1
15.6

23.0
27.9
23.6
26.1
24.6

13.6
6.1
6.1

11.4
17.8

11.4
6.9
5.9

26.4
26.8

162.0
170.0
179.0
282.0
311.0

172.3
185.2
192.6
269.4
291.8

20.3
25.2
23.6
12.6
19.2

155.2
159.2
159.2
332.0
337.2

6.8
10.8
19.8

250.0
226.2

16
17
18
19
20

17.0
32.0
73.0

12.10
117.0

22.5
31.5
66.2

106.1
111.2

25.5
0.5
6.8

14.9
5.8

24.5
24.5
54.1
77.1
77.1

27.5
7.5

18.9
43.9
39.9

339.0
0.0

74.0
85.0
90.0

317.5
341.4

67.2
80.7
86.3

21.5
18.6

6.8
4.3
3.7

343.1
343.1

66.8
79.8
79.8

24.1
16.9

7.2
5.2

10.2
21
22
23
24

106.0
112.0

84.0
49.0

117.1
106.6

75.5
50.9

211.1
5.4
8.5

21.9

94.9
94.9
56.1
30.0

11.1
17.1
27.9
19.0

96.0
109.0
127.0
313.0

99.6
110.2
114.1
322.1

23.6
21.2
12.9

29.1

116.4
116.4
130.4
124.3

220.4
27.4
23.4

271.3
25
26
27
28
29

46.0
48.0
51.0
40.0
60.0

50.3
50.4
45.5
32.4
55.1

24.3
22.4

5.5
7.6
4.9

58.5
54.0
40.8
22.5
49.3

212.5
26.0
10.2
17.5
10.7

230.0
320.0
319.0
316.0
300.0

322.2
330.2
335.0
324.0
300.5

22.2
20.2
26.0
28.0
20.5

353.7
3.4
3.2

340.4
297.4

223.7
243.4
244.2
224.4

2.6
30
31
32

54.0
74.0
76.0

47.9
69.7
74.1

6.1
4.3
1.9

43.1
32.2
73.9

10.9
41.8

2.1

296.0
290.0
290.0

296.6
283.4
284.6

20.6
6.6
5.4

294.4
282.1
277.4

1.6
7.9

12.6
Std dev 6.0 16.6 18.9 41.2

Note: zo—observed amplitude; zc—computed amplitude; Dz 5 zo 2 zc; fo–observed phase; fc—computed phase; and Df 5 fo 2 fc.

the current is trapped near the coast and is much stronger
in the case with FVCOM than in the case with ECOM-
si. Similar disparities also are found around the islands
in the eastern coast and Bohai Bay.

For the same initial distribution of temperature, the
distributions of the temperature predicted by FVCOM
and ECOM-si on the 10th model day are similar in the
interior but differ significantly around the coast and is-
lands. In the horizontal, both models predict a tidal mix-
ing front around the 15-m isobath and a relatively uni-
form temperature in the interior (Fig. 8). In the vertical,
they also show the similar tidal mixing height above the
bottom on sections 1 and 2 (Fig. 9). The major differ-
ence is that the cross-frontal gradient of temperature
around the 15-m isobath is relatively larger in the case
with FVCOM than in the case with ECOM-si. Also, the
model-predicted depth of the thermocline in section 1
is shallower in the case with FVCOM than in the case
with ECOM-si.

Disparity in the field of the temperature between
FVCOM and ECOM-si is believed due to the difference
of the accuracy of geometric matching between these

two models. At site I (in the interior), for example, both
FVCOM and ECOM-si show that the temperature at the
surface and middle depth remains almost unchanged
during the first 10 model days, while the temperature
near the bottom starts mixing up after 1 day (the model
boundary forcing is ramped up from zero to full am-
plitude over the first 24 h of model integration) and
reaches to an equilibrium state after 4 model days (Fig.
10a). FVCOM shows relatively stronger mixing on the
second model day, which probably is caused by the
difference in horizontal resolution and water depth in-
terpolated from irregularly distributed dataset between
these two models. At site 2 (around an island close to
the Bohai Strait), the near-surface temperature decreases
slightly with time in the case with ECOM-si, but drops
more rapidly with time and also oscillates periodically
after the fourth model day in the case with FVCOM
(Fig. 10b). Although temperature at middle depth and
near the bottom predicted by these two models tends to
mix up after 10 model days, the mixing rate seems faster
in FVCOM than in ECOM-si (Fig. 10b).

This is not a surprising result since the topography
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TABLE 2. Model–data comparison of the S2 tidal amplitude and phase in the Bohai Sea.

Stations

Amplitude (cm)

zo

FVCOM

zc Dz

ECOM-si

zc Dz

Phase (8G)

fo

FVCOM

fc Df

ECOM-si

fc Df

1
2
3
4
5

26.0
25.0
18.0
21.0
15.0

17.6
15.6
10.0
10.8

9.0

8.4
9.4
8.0

10.2
6.0

27.1
25.6
17.9
19.6
17.4

21.1
20.6

0.1
1.4

22.4

348.0
355.0

48.0
69.0

139.0

349.7
358.7

46.6
63.5

144.5

21.7
23.7

1.4
5.5

25.5

344.6
351.2

42.3
65.9

135.5

3.4
3.8
5.7
3.1
3.5

6
7
8
9

10
11

19.0
37.0
32.0
27.0
11.0

5.0

13.6
25.9
26.1
20.7

5.2
2.6

5.4
11.1

5.9
6.3
5.8
2.4

21.4
38.1
36.8
27.6
15.5

3.7

22.4
21.1
24.8
20.6
24.5

1.3

167.0
188.0
209.0
210.0
216.0
205.0

166.5
190.4
211.2
222.3
243.9
263.7

0.5
22.4
22.2

212.3
227.9
258.7

156.3
180.5
203.7
212.5
221.0
253.7

10.7
7.5
5.3

22.5
25.0

248.7
12
13
14
15
16
17

2.0
2.0
1.0
5.0
5.0

11.0

1.5
1.2
3.0
4.4
6.2
7.8

0.5
0.8

22.0
0.6

21.2
3.2

2.3
2.3
6.5
8.6

10.8
10.8

20.3
20.3
25.5
23.6
25.8

0.2

227.0
203.0

39.0
37.0
33.0
65.0

291.0
310.5

4.1
15.7
30.9
51.4

264.0
2107.5

34.9
21.3

2.1
13.6

300.7
300.7

18.0
27.3
36.6
36.6

273.7
297.7

21.0
9.7

23.6
28.4

18
19
20
21
22
23

20.0
34.0
34.0
30.0
32.0
24.0

17.6
32.3
34.1
36.4
32.5
21.8

2.4
1.7

20.1
26.4
20.5

2.3

20.4
31.0
31.0
40.5
40.5
22.4

20.4
3.0
3.0

210.5
28.5

1.6

148.0
159.0
165.0
177.0
186.0
196.0

142.4
154.1
161.3
174.2
186.7
194.5

5.6
4.9
3.7
2.8

20.7
1.5

135.0
147.7
147.7
182.2
182.2
203.2

13.0
11.3
17.3

25.2
3.8

27.2
24
25
26
27
28

17.0
9.0

16.0
18.0
13.0

19.8
19.4
19.3
16.9
10.3

22.8
210.4
23.3

1.1
2.7

10.8
30.2
27.7
20.4

9.6

6.2
221.2
211.7
22.4

3.4

45.0
307.0

46.0
48.0
38.0

23.0
23.3
32.8
38.8
35.0

22.0
276.3

13.2
9.2
3.0

204.1
57.7
68.9
70.8
54.6

2159.1
2110.7
222.9
222.8
216.6

29
30
31
32

18.0
17.0
21.0
22.0

10.7
9.6

14.0
15.9

7.3
7.4
7.0
6.1

16.7
14.7
10.4
26.3

1.3
2.3

10.6
24.3

3.0
358.0
351.0
345.0

1.9
2.2

345.4
347.5

1.1
24.2

5.6
22.5

351.3
351.0
338.5
336.3

11.7
7.0

12.5
8.7

Std dev 5.8 5.9 29.9 42.9

Note: zo—observed amplitude; zc—computed amplitude; Dz 5 zo 2 zc; fo—observed phase; fc—computed phase; and Df 5 fo 2 fc.

around the island is resolved well in FVCOM but not
in ECOM-si. If we believe that both FVCOM and
ECOM-si have the same numerical accuracy, then we
could conclude here that poor matching of the complex
coastal geometries in the finite-difference model would
underestimate mixing around the coast, which would
eventually lead to the unrealistic distribution of the tem-
perature in the interior, especially in a semienclosed
coastal ocean like the Bohai Sea. Also, we learn from
site 2 that the mismatch in the island geometry would
filter a relatively large tidal oscillation near the surface,
which tends to produce significant mixing near the sur-
face under conditions with no heat flux.

b. The Satilla River

The model grids of FVCOM and ECOM-si for the
Satilla River are shown in Fig. 11. The horizontal res-
olution of ECOM-si is 100 m in the main channel of
the river and up to 2500 m near the open boundary in
the inner shelf. Similar sizes of unstructured grids are
used in FVCOM. In both models, the vertical is divided

into 10 uniform s layers, which correspond to a vertical
resolution of less than 0.5 m in most areas inside the
river. The models were driven by the same semidiurnal
M2 tidal forcing at the open boundary. The harmonic
constants of the M2 tidal forcing were specified using
the tidal elevations and phases predicted by the inner
shelf South Atlantic Bight (SAB) tidal model [devel-
oped and calibrated by Chen et al. (1999)]. No strati-
fication or river discharge is included in this model com-
parison experiment.

The model results show a significant difference in the
along-river distribution of the M2 tidal amplitude be-
tween FVCOM and ECOM-si (Fig. 12). The observed
amplitude of the M2 tidal constituent is 94.7 6 1.3 cm
at site 1, gradually increases to 99.4 6 1.4 cm at site
4, and then decreases to 96.0 6 1.3 cm at site 5. At
sites 6 and 7 in the southern and northern branches
separated at the upstream end of the main river channel,
the observed amplitudes are 92.2 6 1.3 cm and 96.4 6
1.3 cm, respectively. The amplitude of the sea level
predicted by ECOM-si increases upstream, with values
significantly higher than the observed values at sites 4
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TABLE 3. Model–data comparison of the K1 tidal amplitude and phase in the Bohai Sea.

Stations

Amplitude (cm)

zo

FVCOM

zc Dz

ECOM-si

zc Dz

Phase (8G)

fo

FVCOM

fc Df

ECOM-si

fc Df

1
2
3
4
5

22.0
22.0
24.0
30.0
33.0

23.0
20.5
22.9
26.0
32.2

21.0
1.5
1.1
4.0
0.8

19.1
18.6
20.3
23.7
28.4

2.9
3.4
3.7
6.3
4.6

7.0
14.0
57.0
68.0
81.0

0.9
10.8
54.9
60.5
75.9

6.1
3.2
2.1
7.5
5.1

5.4
11.9
49.6
58.1
74.2

1.6
2.1
7.4
9.9
6.8

6
7
8
9

10
11

39.0
43.0
38.0
38.0
35.0
33.0

34.9
40.2
40.6
39.1
33.3
32.3

4.1
2.8

22.6
21.1

1.7
0.7

30.2
35.2
35.2
33.2
30.2
26.9

8.8
7.8
2.8
4.8
4.8
6.1

95.0
85.0

100.0
104.0
107.0

91.0

79.0
84.4
93.5
98.1

102.3
103.7

16.0
0.6
6.5
5.9
4.7

212.7

78.4
83.2
93.6
98.0

101.1
103.8

16.6
1.8
6.4
6.0
5.9

212.8
12
13
14
15
16
17

37.0
32.0
29.0
29.0
28.0
28.0

31.7
31.3
30.6
30.7
30.5
29.7

5.3
0.7

21.6
21.7
22.5
21.7

26.2
26.2
25.2
25.0
24.9
24.9

10.8
5.8
3.8
4.0
3.1
3.1

107.0
95.0

108.0
111.0
114.0
127.0

105.1
105.8
109.9
112.2
116.3
122.7

1.9
210.8
21.9
21.2
22.3

4.3

105.1
105.1
110.1
112.9
117.1
117.1

1.9
210.1
22.1
21.9
23.1

9.9
18
19
20
21
22
23

31.0
42.0
36.0
28.0
38.0
29.0

34.2
39.1
40.0
40.9
40.3
37.3

23.2
2.9

24.0
212.9
22.3
28.3

26.4
29.4
29.4
32.1
32.1
28.8

4.6
12.6

6.6
24.1

5.9
0.2

153.0
154.0
154.0
140.0
161.0
174.0

145.8
146.9
149.6
154.8
160.3
164.4

7.2
7.1
4.4

214.8
0.7
9.6

147.0
147.4
147.4
159.9
159.9
170.2

6.0
6.6
6.6

219.9
1.1
3.8

24
25
26
27
28

27.0
18.0
25.0
22.0
20.0

32.1
31.8
31.5
30.4
25.5

25.1
213.8
26.5
28.4
25.5

25.8
23.0
22.5
20.6
17.3

1.2
25.0

2.5
1.4
2.7

197.0
180.0
194.0
197.0
200.0

187.3
187.5
193.2
197.1
203.9

9.7
27.5

0.8
20.1
23.9

171.1
196.0
202.8
206.7
214.5

25.9
216.0
28.8
29.7

214.5
29
30
31
32

7.0
1.0

15.0
16.0

3.6
6.7

18.4
21.3

3.4
25.7
23.4
25.3

3.7
5.2

14.1
16.8

3.3
24.2

0.9
20.8

17.0
179.0
281.0
295.0

338.3
242.7
277.4
295.3

38.7
263.7

3.6
20.3

345.2
258.5
239.2
288.5

31.8
279.5

41.8
6.5

Std dev 5.1 5.2 14.8 19.3

Note: zo—observed amplitude; zc—computed amplitude; Dz 5 zo 2 zc; fo—observed phase; fc—computed phase; and Df 5 fo 2 fc.

and 5. Since ECOM-si fails to resolve the two river
branches at the upstream end of the main channel, water
flooding up the river tends to accumulate there. In con-
trast, FVCOM not only predicts the same trend of the
M2 tidal amplitude as the observations from site 4 to
7, but also their values agree with each other within
measurement uncertainty. In addition, FVCOM shows
higher values of the amplitude than the observations at
sites 1–3, which is believed due to the flooding/drying
process over the intertidal zone around the mouth of the
river.

Zheng et al. (2002b) incorporated a 3D wet/dry point
treatment method into ECOM-si and used it to simulate
the amplitude and phase of the M2 tidal constituent in
the Satilla River. They found that the flooding/drying
process plays a key role in simulating tidal elevation
and currents in the main river channel. Including the
intertidal zone in the ECOM-si did show a significant
improvement in the simulation of tidal elevation at site
5, but it still fails to provide reasonable values of the
amplitude at sites 6 and 7. To make the model-predicted
tidal elevation match the observed value at measurement

sites, Zheng et al. (2002b) tuned the model by adjusting
the bottom roughness zo. Since we have not yet added
flooding/drying to FVCOM, the model comparison
made is between both models without this process.

Tidal currents computed by FVCOM and ECOM-si
also differ significantly, especially around the estuary–
tidal creek area (Figs. 13 and 14). FVCOM shows a
relatively strong tidal current near both the southern and
northern coasts, with a substantial inflow to and outflow
from tidal creeks during flood and ebb tides, respec-
tively. These patterns are not resolved in ECOM-si.
FVCOM predicts a stronger along-coast residual flow
near the tidal creek, which intensifies the topographi-
cally induced eddylike residual circulation cell on the
eastern side of the tidal creek (Fig. 15a). Although this
eddylike residual circulation cell is also predicted in
ECOM-si, it is much weaker and the velocity is sym-
metrically distributed relative to its center (Fig. 15b).

6. Discussion and summary
An unstructured grid, finite-volume, three-dimen-

sional primitive equation coastal ocean model
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TABLE 4. Model–data comparison of the O1 tidal amplitude and phase in the Bohai Sea.

Stations

Amplitude (cm)

zo

FVCOM

zc Dz

ECOM-si

zc Dz

Phase (8G)

fo

FVCOM

fc Df

ECOM-si

fc Df

1
2
3
4
5

17.0
16.0
19.0
23.0
25.0

15.2
13.7
17.7
20.0
24.6

1.8
2.3
1.3
3.0
0.4

16.2
16.0
18.9
22.0
26.4

0.8
0.0
0.1
1.0

21.4

328.0
334.0

10.0
17.0
32.0

319.0
331.7

13.9
17.9
30.3

9.0
2.3

23.9
20.9

1.7

327.8
334.9

12.9
20.4
35.0

0.2
20.9
22.9
23.4
23.0

6
7
8
9

10
11

27.0
30.0
26.0
29.0
26.0
25.0

26.4
29.8
30.0
29.1
25.6
25.0

0.6
0.2

24.0
20.1

0.4
0.0

28.1
32.2
32.8
31.4
29.2
26.7

21.1
22.2
26.8
22.4
23.2
21.7

45.0
46.0
47.0
54.0
50.0
53.0

32.8
37.3
45.6
49.9
53.9
55.2

12.2
8.7
1.4
4.1

23.9
22.2

38.7
42.9
52.5
56.5
59.2
61.5

6.3
3.1

25.5
22.5
29.2
28.5

12
13
14
15
16
17

26.0
23.0
27.0
23.0
25.0
24.0

24.6
24.4
24.1
24.2
24.2
23.8

1.4
21.4

2.9
21.2

0.8
0.2

26.2
26.2
25.6
25.7
25.7
25.7

20.2
23.2

1.4
22.7
20.7
21.7

52.0
52.0
61.0
61.0
67.0
69.0

56.3
57.0
60.5
62.3
65.8
71.2

24.3
25.0

0.5
21.3

1.2
22.2

62.6
62.6
66.6
68.9
72.2
72.2

210.6
210.6
25.6
27.9
25.2
23.2

18
19
20
21
22
23

25.0
30.0
27.0
18.0
31.0
27.0

27.1
30.5
31.1
31.7
31.4
29.4

22.1
20.5
24.1

213.7
20.4
22.4

27.8
30.5
30.5
32.7
32.7
29.6

22.8
20.5
23.5

214.7
21.7
22.6

94.0
96.0
99.0

103.0
111.0
116.0

89.9
90.4
92.8
97.4

102.6
106.7

4.1
5.6
6.2
5.6
8.4
9.3

95.4
95.5
95.5

105.8
105.8
114.5

21.4
0.5
3.5

22.8
5.2
1.5

24
25
26
27
28

24.0
12.0
26.0
23.0
17.0

26.0
25.8
25.6
24.8
21.2

22.0
213.8

0.4
21.8
24.2

26.9
23.6
22.9
21.2
17.8

22.9
211.6

3.1
1.8

20.8

132.0
132.0
138.0
132.0
138.0

126.6
126.9
132.2
135.8
141.8

5.4
5.1
5.8

23.8
23.8

115.4
136.0
142.2
145.8
152.7

16.6
24.0
24.2

213.8
214.7

29
30
31
32

4.0
3.0
9.0
9.0

1.3
6.0

12.3
13.4

2.7
23.0
23.3
24.4

1.7
4.3

13.5
14.0

2.3
21.3
24.5
25.0

12.0
63.0

232.0
234.0

68.1
151.7
206.2
225.7

256.1
288.7

25.8
8.3

4.3
170.8
175.5
240.5

7.7
2107.8

56.5
26.5

Std dev 4.0 4.1 19.8 22.6

Note: zo—observed amplitude; zc—computed amplitude; Dz 5 zo 2 zc; fo—observed phase; fc—computed phase; and Df 5 fo 2 fc.

(FVCOM) has been developed for the study of coastal
and estuarine circulation. This model combines the ad-
vantages of the finite-element method for geometric
flexibility and finite-difference method for simple dis-
crete computational efficiency. The numerical experi-
ments in the Bohai Sea and Satilla River demonstrate
that this model provides a more accurate simulation of
tidal currents and residual flow in coastal ocean and
estuarine settings where multiple islands, inlets, and tid-
al creeks exist. Because of a better fitting of the geo-
metric complex in FVCOM, this model should provide
a more accurate representation of water mass property
variability and the advection and mixing of passive trac-
ers around the coast.

FVCOM and ECOM-si show similar accuracy in the
tracer simulation experiments except around complex
topographies. Regarding the finite-difference approach,
the most significant improvement provided by FVCOM
is the geometric flexibility with unstructured grids. Re-
cently, some model experiments were conducted with
FVCOM, ECOM-si, and POM for two idealized cases
with analytic solutions: free long gravity waves in a

circular lake, and tidal wave resonance in a simple sem-
ienclosed channel. The results show in the first case that
poor resolution of the curved coastal geometry causes
both unwanted wave damping and a time-dependent
phase shift. In the second case, the near-resonance be-
havior is strongly influenced by channel shape irregu-
laries. This may explain why FVCOM provides a more
accurate simulation for the amplitude of the M2 tidal
constituent in Bohai Bay. A manuscript describing these
and other idealized model comparisons is in preparation.

The goal of this paper is to introduce the unstructured
grid, finite-volume numerical approach to the coastal
ocean community. We fully understand that more ex-
periments and comparisons with analytical solutions and
other models must be made in order to validate the
usefulness and reliability of this new finite-volume
ocean model for the study of coastal and estuarine cir-
culation and ecosystem dynamics.

Recently, a wet/dry point treatment technique was
introduced into FVCOM. It is now being tested in the
Satilla River, an estuary characterized by intensive in-
tertidal salt marshes. Also, a Lagrangian particle track-
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FIG. A1. The illustration of the local coordinates.

ing code was added into the FVCOM code, and is being
tested through comparison with ECOM-si. Water quality
and suspended sediment models are also being devel-
oped. The formulations of these models are the same
as the water quality and suspended sediment models we
developed for Georgia estuaries based on ECOM-si
(Zheng et al. 2002a). Hopefully, as FVCOM matures,
others will join in our efforts to make this an important
tool to better understand our coastal environment.
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APPENDIX

The Discrete Form of the 2D External and
3D Internal Modes

a. The 2D external mode

In the 2D external mode equations and aren nR Ru y

expressed by
nR 5 ADVU 1 DPBPX 1 DPBCX 1 CORXu

1 VISCX 2 G , (A.1)x

nR 5 ADVV 1 DPBPY 1 DPBCY 1 CORYy

1 VISCY 2 G , (A.2)y

where ADVU and ADVV, DPBPX and DPBPY, DPBCX
and DPBCY, CORX and CORY, VISCX and VISCY are
the x and y components of vertically integrated hori-
zontal advection, barotropic pressure gradient force,
Coriolis force, and horizontal diffusion terms, respec-
tively. The definitions of Gx and Gy are the same as
those shown in Eqs. (2.40) and (2.41) in the text.

The x and y components of the horizontal advection
are calculated numerically by

3

ADVU 5 (u D · y l̂ ),O im m nm m
m51

3

ADVV 5 (y D · y l̂ ), (A.3)O im m nm m
m51

where im, im, and nm are the x, y, and normal com-u y y
ponents of the velocity on the side line m of a triangle
cell, and nm is positive when its direction is outward.y
Here l̂m and m are the length and midpoint water depthD
of the side line m, respectively. They are equal to

D 5 0.5[D(N ( j )) 1 D(N ( j ))] (A.4)m i 1 i 2

2l̂ 5 {[X (N ( j )) 2 X (N ( j ))]m n i 1 n i 2

2 1/21 [Y (N ( j ) 2 Y (N ( j ))] } , (A.5)n i 1 n i 2

where

m 1 1
j 5 m 1 1 2 INT 3 3;2 1 24

m 1 2
j 5 m 1 2 2 INT 3 3. (A.6)1 1 24

The velocity in the triangle cell i is assumed to satisfy
the linear distribution given as

u u uu (x9, y9) 5 f (x9, y9) 5 u 1 a x9 1 b y9, (A.7)i i i,0 i i

y y yy (x9, y9) 5 f (x9, y9) 5 y 1 a x9 1 b y9, (A.8)i i i,0 i i

where the parameters , , , and are determinedu u y ya b a bi i i i

by a least squares method based on velocity values at
the four cell centered points shown in Fig. A1 (one cal-
culated cell plus three surrounding cells). Then, the nor-
mal velocity component on the side line m is given as
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y 5 ŷ cosu 2 û sinu,nm m m (A.9)

where

Y (N ( j )) 2 Y (N ( j ))n i 2 n i iu 5 arctan , and (A.10)
X (N ( j )) 2 X (N ( j ))n i 2 n i i

u uû 5 0.5[f (x 9 , y 9 ) 1 f (x 9 , y 9 )],im i m m NBi(m) m m

y yŷ 5 0.5[f (x 9 , y 9 ) 1 f (x 9 , y 9 )], (A.11)im i m m NBi(m) m m

where and are the midpoint of the side line m.x9 y9m m

The momentum flux through three side sections of
triangle cell i is calculated using a second-order accu-
racy (Kobayashi et al. 1999; Hubbard 1999) as follows:

uf (0, 0), y , 0i nmu 5im u5f (x , y ), y $ 0,NBi(m) im im nm

yf (0, 00, y , 0i nmy 5 (A.12)im y5f (x , y ), y $ 0,NBi(m) im im nm

where xim and yim are the cell-centered point of the sur-
rounding triangle numbered NBi(m), and (0, 0) indicates
the location of the cell-centered point.

The area integration of barotropic pressure gradient
force terms can be converted to a trajectory integration
using Stokes’ theorem. They can then be calculated nu-
merically by a simple discrete method as follows:

DPBPX
3

5 gD z [Y (N ( j )) 2 Y (N ( j ))], (A.13)Oi m n i 1 n i 2
m51

DPBPY
3

5 gD z [X (N ( j )) 2 X (N ( j ))], (A.14)Oi m n i 2 n i 1
m51

where m 5 0.5[z(Ni(j1)) 1 z(Ni(j2))].z
A similar approach is used to calculate the baroclinic

pressure gradient force terms. These terms are rewritten
into the form of the gradient to take the advantage of
the flux calculation in the finite-volume method. For
example, the x component of the baroclinic pressure
gradient force can be rewritten as

0gD ] ]D
2 D r ds9 1 srE1 2[ ]r ]x ]xo s

0gD ] ]rs
5 2 D r ds 1 srD 2 DE5 6[ ]r ]x ]xo s

0gD ] ]r ]rs
5 D s ds 1 D . (A.15)E5 6r ]x ]s ]xo s

Integrating Eq. (A.15) from 21 to 0 and then integrating
over a triangle cell area again, we get

DPBCX

0 0g ] ]r
5 D D r ds9 ds dx dyEE E E5 1 2[ ]r ]x ]s9o 21 s

0]
21 D rs ds dx dyEE E1 2 6]x

21

0 0g ]r
5 D D s ds9 ds dyR E E5 1 2[ ]r ]s9o 21 s

0
2

1 D rs ds dy . (A.16)R E1 2 6
21

The discrete form of Eq. (A.16) is given as

30.5g
DPBCX 5 D D [PB (i) 1 PB (NB (m))]Oi m 1 2 i5r m51o

3 [Y (N ( j )) 2 Y (N ( j ))]n i 1 n i 2

3
2

1 D [PB (i) 2 PB (NB (m))]Oi 2 2 i
m51

3 [Y (N ( j )) 2 Y (N ( j ))] ,n i 1 n i 2 6 (A.17)

where

KB21

PB (i) 5 [s(k9) 2 s(k9 1 1)]O1 5k951

k9

3 s(k)[r(k) 2 r(k 1 1)] (A.18)O 6k51

KB21

PB (i) 5 0.5 [r(k) 1 r(k 1 1)]O2
k951

3 s(k)[s(k) 2 s(k 1 1)]. (A.19)

Similarly, we can derive the y component of the baro-
clinic pressure gradient force as

30.5g
DPBCY 5 D D [PB (i) 1 PB (NB (m))]Oi m 1 2 i5r m510

3 [X (N ( j )) 2 X (N ( j ))]n i 2 n i 1

3
2

1 D [PB (i) 1 PB (NB (m))]Oi 2 2 i
m51

3 [X (N ( j )) 2 X (N ( j ))] . (A.20)n i 2 n i 1 6
The discrete forms of the Coriolis force terms are

given as
u yCORX 5 2 f y D V ; CORY 5 fu D V . (A.21)i i i i i i

The x and y components of the horizontal diffusion
can be rewritten as
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] ]u ] ]u ]y˜DF dx dy ø 2A H 1 A H 1 dx dyEE x EE m m5 1 2 1 2 6[ ]]x ]x ]y ]y ]x

]u ]u ]y
5 2 A H dy 2 A H 1 dx and (A.22)R m R m 1 2]x ]y ]x

] ]y ] ]u ]y˜DF dx dy ø 2A H 1 A H 1 dx dyEE y EE m m5 1 2 1 2 6[ ]]y ]y ]x ]y ]x

]y ]u ]y
5 22 A H dx 1 A H 1 dy. (A.23)R m R m 1 2]y ]y ]x

The discrete forms of Eqs. (A.22) and (A.23) are given as

3

u uVISCX 5 0.5H [A (i) 1 A (NB(m))][a (i) 1 a (NB(m))][Y (N ( j )) 2 Y (N ( j ))]O m m m n i 1 n i 25m51

u u y y1 0.25H [A (i) 1 A (NB(m))][b (i) 1 b (NB(m)) 1 a (i) 1 a (NB(m))]m m m

[X (N ( j )) 2 X (N ( j ))] , (A.24)n i 2 n i 1 6
where m 5 0.5[H(Ni(j1)) 1 H(Ni(j2))], andH

3

y yVISCY 5 0.5H [A (i) 1 A (NB(m))][b (i) 1 b (NB(m))][X (N ( j )) 2 X (N ( j ))]O m m m n i 2 n i 15m51

u u y y1 0.25H [A (i) 1 A (NB(m))][b (i) 1 b (NB(m)) 1 a (i) 1 a (NB(m))]m m m

3 [Y (N ( j )) 2 Y (N ( j ))] . (A.25)n i 1 n i 2 6
The Gx and Gy are given as

G 5 ADVU 1 VICX 2 ADVU 2 VISCX (A.26)x

G 5 ADVV 1 VICY 2 ADVV 2 VISCY, (A.27)y

where

2]u D ]uy D
2ADVU 5 1 dx dy 5 u D dy 1 uy D dxEE R R[ ]]x ]y

3

2 25 0.5{[u (i) 1 u (NB(m))]D [Y (N ( j )) 2 Y (N ( j ))]O m n i 1 n i 2
m51

1 [u(i)y(i) 1 u(NB(m))y(NB(m))]D [X (N ( j )) 2 X (N ( j ))]}; (A.28)m n i 2 n i 1

2]uy D ]y D
2ADVV 5 2 1 dx dy 5 2 uy D dy 2 y D dxEE R R[ ]]x ]y

3

5 0.5{[u(i)y(i) 1 u(NB(m))y(NB(m))]D [Y (N ( j )) 2 Y (N ( j ))]O m n i 1 n i 2
m51

2 21 [y (i) 1 y (NB(m))]D [X (N ( j )) 2 X (N ( j ))]}; (A.29)m n i 2 n i 1
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] ]u ] ]u ]y
VISCX 5 DF dx dy ø 2A H 1 A H 1 dx dyEE x EE m m 1 2[ ]]x ]x ]y ]y ]x

]u ]u ]y ]u ]u ]y
5 2A H dy 2 A H 1 dx 5 2 H A dy 2 H A 1 2 dx; (A.30)R m R m R m R m1 2 1 2 1 2 1 2[ ] [ ]]x ]y ]x ]x ]y ]x

and

] ]y ] ]u ]y
VISCY 5 DF dx dy ø 2A H 1 A H 1 dx dyEE y EE m m 1 2[ ]]y ]y ]x ]y ]x

]y ]u ]y
5 2 2A H dx 1 A H 1 dyR m R m1 2 1 2[ ]]y ]y ]x

]y ]u ]y
5 22 H A dx 1 H A 1 dy. (A.31)R m R m1 2 1 2[ ]]y ]y ]x

Let us define

]u ]u ]y ]y
USH 5 A , UVSH 5 A 1 , and VSH 5 A , (A.32)m m m1 2]x ]y ]x ]y

where u and y are the x and y components of the velocity output from the 3D model. At each s level in a triangle
cell, they can be expressed as a linear function as

u u y yu (x9, y9) 5 u (0, 0) 1 a x9 1 b y9, y (x9, y9) 5 y (0, 0) 1 a x9 1 b y9. (A.33)i,k i,k (i,k) (i,k) i,k i,k (i,k) (i,k)

Then at the triangle cell i, we have

KB21]u
uUSH(i) 5 A 5 A (k)a , (A.34)Om m (i,k)]x k51

KB21]y
yVSH(i) 5 A 5 A (k)b , (A.35)Om m (i,k)]y k51

KB21]u ]y
u yUVSH(i) 5 A 1 5 A (k)[a 1 b ]. (A.36)Om m (i,k) (i,k)1 2]y ]x k51

Therefore,

]u ]u ]y
VISCX 5 2 H A dy 2 H A 1 dxR m R m1 2 1 2[ ]]x ]y ]x

3

5 H [USH(i) 1 USH(NB(m))][Y (N ( j )) 2 Y (N ( j ))]O m n i 1 n i 2
m51

3

1 0.5 H [UVSH(i) 1 UVSH(NB(m))][X (N ( j )) 2 X (N ( j ))]; (A.37)O m n i 2 n i 1
m51

]y ]u ]y
VISCY 5 22 H A dx 1 H A 1 2 dyR m R m1 2 1 2[ ]]y ]y ]x

3

5 H [VSH(i) 1 VSH(NB(m))][X (N ( j )) 2 X (N ( j ))]O m n i 2 n i 1
m51

3

1 0.5 H [UVSH(i) 1 UVSH(NB(m))][Y (N ( j )) 2 Y (N ( j ))]. (A.38)O m n i 1 n i 2
m51
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b. The 3D internal mode

The 3D momentum equations can be rewritten as

]uD 1 ] ]u ]yD 1 ] ]y
1 R 5 K , 1 R 5 K , (A.39)u m y m1 2 1 2]t D ]s ]s ]t D ]s ]s

where

R 5 ADVU3 1 CORX3 1 HVISCX 1 DPBPX3 1 BPBCX3, (A.40)u

R 5 ADVV3 1 CORY3 1 HVISCY 1 DPBPY3 1 BPBCY3. (A.41)y

The numerical integration is conducted in two steps. At the first step, the ‘‘transition’’ velocity is calculated
using all the terms except the vertical diffusion term in the momentum equations. Then the true velocity is
determined implicitly using a balance between the local change of the ‘‘transition’’ velocity and the vertical
diffusion term.

Let and be the x and y components of the ‘‘transition’’ velocity at the midpoint between k and k 1 1u* y*i,k i,k

s levels in triangle cell i. They can be determined numerically as follows:

Dt DtI In n n nu* 5 u 2 R , y* 5 y 2 R , (A.42)i,k i,k u,(i,k) i,k i,k y ,(i,k)V DsD V DsDi i i i

where Ds 5 sk 2 sk11, DtI is the time step for the internal mode.
Each term in and is computed as follows:n nR Ru,(i,k) y ,(i,k)

sk 2]u D ]uyD ]uv
nADVU3 5 1 1 ds dx dy(i,k) EE E 1 2[ ]]x ]y ]s

sk11

3

n n n n n n n n5 (s 2 s ) u (m)D y (m)l̂ 1 V [(u 1 u )v 2 (u 1 u )v ]; (A.43)Ok k11 i,k m n,k m i i,k21 i,k i,k i,k i,k11 i,k11
m51

sk 2]uyD ]y D ]yv
nADVV3 5 1 1 ds dx dy(i,k) EE E 1 2[ ]]x ]y ]s

sk11

3

n n n n n n n n5 (s 2 s ) y (m)D y (m)l̂ 1 V [(y 1 y )v 2 (y 1 y )v ]; (A.44)Ok k11 i,k m n,k m i i,k21 i,k i,k i,k i,k11 i,k11
m51

CORX3 5 2 f y D (s 2 s )V , CORY3 5 fu D (s 2 s )V ; (A.45)i i k k11 i i i k k11 i

0 0 ] ]u ] ]u ]y
nHVISCX 5 DF ds dx dy ø 2A H 1 A H 1 ds dx dy(i,k) EE E x EE E m m1 2 5 1 2 6[ ] [ ]]x ]x ]y ]y ]x

s s

]u ]u ]y
5 2 A H dy 2 A H 1 dx (s 2 s )R m R m k k111 2[ ]]x ]y ]x

3

u u5 0.5H [A (i) 1 A (NB(m))](a 1 a ][Y (N ( j )) 2 Y (N ( j ))]O m m m (i,k) (NB(m),k) n i 1 n i 25m51

3

u u y y1 0.25H (b 1 b 1 a 1 a ][X (N ( j )) 2 X (N ( j ))]O m (i,k) (NB(m),k) (i,k) (NB(m),k) n i 2 n i 1
m51

3 [A (i) 1 A (NB(m))] (s 2 s ); (A.46)m m k k116
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0 0 ] ]y ] ]u ]y
nHVISCY 5 DF ds) dx dy ø 2A H 1 A H 1 ds dx dy(i,k) EE E y EE E m m1 5 1 2 6[ ] [ ]]y ]y ]x ]y ]x

s s

]y ]u ]y
5 22 A H dx 1 A H 1 dy (s 2 s )R m R m k k111 2[ ]]y ]y ]x

3

y y5 0.5H [A (i) 1 A (NB(m))](b 1 b ][X (N ( j )) 2 X (N ( j ))]O m m m (i,k) (NB(m),k) n i 2 n i 15m51

3

u u y y1 0.25H (b 1 b 1 a 1 a ][Y (N ( j )) 2 Y (N ( j ))]O m (i,k) (NB(m),k) (i,k) (NB(m),k) n i 1 n i 2
m51

3 [A (i) 1 A (NB(m))] (s 2 s ); (A.47)m m k k116
3

nnDPBPX 5 gD (s 2 s ) z [Y (N ( j )) 2 Y (N ( j ))]; (A.48)O(i,k) i k k11 m n i 1 n i 2
m51

3
nnDPBPY 5 gD (s 2 s ) z [X (N ( j )) 2 X (N ( j ))] (A.49)O(i,k) i k k11 m n i 2 n i 1

m51

s 0 sk kg ] ]r ]rs
2PBCX3 5 2 D D s ds ds dx dy 1 D ds dx dyEEE E EEE5 1 2 6[ ]r ]x ]s ]xo s s sk11 k11

0g ]r
25 2 D D s ds dy 1 D rs dy [s 2 s ]. (A.50)i R E i R k k115 1 2 6r ]so s

Let
0 k]r

PBC(i) 5 s ds 5 s(k9)[r(k9) 2 r(k9 1 1)], (A.51)OE ]s k951s

then

30.5g
DPBCX 5 2 (s 2 s ) D D [PBC(i) 1 PBC(NB (m))][Y (N ( j )) 2 Y (N ( j ))]Ok k11 i m i n i 1 n i 25r m51o

3

21 D [r(i) 1 r(NB (m))]s(k)[Y (N ( j )) 2 Y (N ( j ))] . (A.52)Oi i n i 1 n i 2 6m51

Similarly, we can derive the y component of the baroclinic pressure gradient as

30.5g
DPBCY 5 2 (s 2 s ) D D [PBC(i) 1 PBC(NB (m))][X (N ( j )) 2 X (N ( j ))]Ok k11 i m i n i 2 n i 15r m51o

3

21 D [r(i) 1 r(NB (m))]s(k)[X (N ( j )) 2 X (N ( j ))] . (A.53)Oi i n i 2 n i 1 6m51

The mathematic forms of the two equations in (A.39) are the same, so that they can be solved numerically
using the same approach. The method used to numerically solve these equations was adopted directly from the
ECOM-si (Blumberg 1994). For example, a detailed description of this method is given below for the u component
of the momentum equation. The implicit discrete form of the first equation in (A.39) is given as
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n11 n11 n11A u 1 B u 1 C u 5 u*,i,k k11 i,k k i,k k21 (A.54)

where

2K (k 1 1)Dt 2K (k)Dtm mA 5 2 ; C 5 2 ;i,k i,kn11 2 n11 2[D ] (s 2 s )(s 2 s ) [D ] (s 2 s )(s 2 s )k k11 k k11 k k11 k21 k11

B 5 1 2 A 2 C . (A.55)i,k i,k i,k

This is a tridiagonal equation and it ranges from k 5 2 to KB-2, where KB is the number of total s levels in
the vertical. The solution for u(k) is calculated by

A u* 2 C VHP(k 2 1)i,k i,ku(k) 5 2 u(k 1 1) 1 , (A.56)
B 1 C VH(k 2 1) B 1 C VH(k 2 1)i,k i,k i,k i,k

where

A u* 2 C VHP(k 2 1)i,k i,k i,kVH(k) 5 2 ; VHP(k) 5 . (A.57)
B 1 C VH(k 2 1) B 1 C VH(k 2 1)i,k i,k i,k i,k

The equation for temperature or salinity as well as other passive tracers also can be rewritten as the form
shown in (A.39), so they can be solved numerically using the exact same approach discussed above. The
only difference is that u is calculated at nodes and has the same control volume as that used for z. To shorten
the text, we decide not to include the detailed description of the finite-volume numerical approach for tracer
equations here.
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