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Abstract

The influence of tidal forcing and tidal and wind mixing on circulation and stratification over Georges
Bank and adjacent regions in the Gulf of Maine has been examined using the 3-D semi-implicit version of the
Blumberg and Mellor (1987) primitive equation ocean-circulation model. The numerical domain covered the
Gulf of Maine/Georges Bank region with an open boundary starting at the New Jersey coast and ending at
the Nova Scotia coast, with increased spatial resolution over Georges Bank. Numerical experiments were
conducted using both smoothed and non-smoothed high-resolution (15s) bottom topography. The model
was forced by specifying the M, elevation and phase on the open boundary, and several forms of the bottom
roughness parameter z, were used. The model provided a reasonable simulation of the M, tidal elevations
and currents. The model, when run as an initial value problem with early summer stratification, exhibited
tidal mixing fronts around the 40-60 m isobath over Georges Bank and Nantucket Shoals, and 100-m
isobath on Brown Bank. The formation of these tidal mixing fronts significantly enhanced the along-isobath
tidal rectified current over Georges Bank and the other two shoal regions. A cool-water band developed
within the frontal zone along the eastern and southern flanks of Georges Bank and Nantucket Shoal, and it
became cooler owing to wind mixing and upwelling as a mean summer wind stress was added. Tidal mixing
and turbulent dissipation varied in time asymmetrically over Georges Bank. Over Georges Bank, tidal
mixing was generally characterized as a local 1-D balance between turbulent shear production and
dissipation. The spatial structure of the tidal residual flow and local turbulent dissipation rate depended
critically on the spatial resolution of the bottom topography and the spatial distribution of z,. Analysis of the
3-D momentum balance and the residual flow over the center of Georges Bank indicates that earlier results
based on a 2-D cross-bank model correctly captured the basic dynamics of stratified tidal rectification and
tidal mixing in this idealized model setting. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We recently have extended our 2-D coupled physical/biological model (Franks and Chen, 1996)
to cover the Georges Bank and Gulf of Maine domain. This 3-D-coupled model includes new
high-resolution topographic data and can be run as an initial value problem starting with different
stratification, nutrient, phytoplankton and zooplankton distributions to test various ideas about
fundamental processes in this ecosystem. As an initial test of this new model, we will focus in this
first paper (Part I) on the physical processes that influence the formation of tidal mixing fronts and
stratified residual flow over Georges Bank. A second paper (Part II) will present the model-
predicted biological fields (Franks and Chen, 2001). A brief introduction to the study region will be
given next.

The Gulf of Maine (GOM), located between Cape Cod and Nova Scotia, is a semi-enclosed
basin opening to the North Atlantic Ocean (Fig. 1). The GOM topography is characterized
by several deep basins and shallow submarine banks (Fig. 2a). The largest bank is Georges Bank
(GB), which is separated from Nantucket Shoals (NS) to the west by the Great South Channel
(GSC) and from the Scotian Shelf to the east by the Northeast Channel (NEC). GB is roughly
elliptical in plane view, with a length of about 200 km along the major axis and a width of about
150 km along the minor axis. The cross-bank bottom topography rises steeply with a slope of about
0.01 from 1000 m on the upper slope to 100 m at the shelf break, then increases slowly with a slope
of roughly 0.001-40m over a distance of about 75km towards the crest of the bank, and
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Fig. 1. Bathymetry (in meters) of the southern New England continental margin. The heavy solid lines are the two
sections (Sections 1 and 2) used to present the cross-bank distribution of currents and stratification in the paper. Filled
diamond symbols locate the turbulent microstructure measurement stations made by Horne et al. (1996) (M,) and
Burgett (1997) (M,). C1, C2, and C3 are three reference stations used to describe model time series.
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Fig. 2. 3-D views of the original non-smoothed (15 s) and smoothed bottom topographies used in our model experiments.

then decreases rapidly with a slope of about 0.03 to a depth of 300 m in the deep basin just north of
the bank crest.

The first systematic study of general circulation in the GOM was conducted by Bigelow (1927),
who suggested that the summer surface flow was dominated by two relatively large-scale gyres:
a cyclonic circulation around Jordan and Wilkinson Basins to the north of GB and an anticyclonic
(clockwise) flow around GB. The Butman et al. (1982) summary of moored Eulerian current
measurements confirmed the mean clockwise flow around GB, and showed a southward flow along
the southeast coast of Cape Cod. Recent Lagrangian measurements, conducted using satellite-
tracked drifters with drogues at 5 and 50 m, clearly illustrated the closed nature of the around-bank
clockwise circulation on GB during summer (Limeburner and Beardsley, 1996) (denoted L&B).
These drifters showed a large seasonal change in residual circulation over GB. During summer,
they tended to move clockwise within or close to the tidal mixing frontal zone around GB, and
frequently made several complete circuits over several months. In fall and winter, the drifters
tended to leave GB within a few weeks.

Loder (1980) used an analytical model to show that the clockwise residual circulation over GB is
due to rectification of the strong semidiurnal tidal currents over the bank’s variable topography.
This mechanism was further demonstrated by Greenberg (1983) using a vertically averaged
barotropic numerical model and by Lynch and Naimie (1993) using a 3-D finite-element model
with realistic GOM/GB topography. The summer intensification of the clockwise circulation is
believed due, in part, to seasonal development of the tidal mixing front (Loder and Wright, 1985;
Chen and Beardsley, 1995), nonlinear interaction of internal waves near the fronts, and modifica-
tion of internal friction by stratification (Chen et al., 1995a). This seasonal circulation pattern was
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simulated diagnostically by Naimie et al. (1994) and later prognostically by Naimie (1996), using
bi-monthly averaged climatological hydrographic and surface wind-stress data.

Tidal currents account for about 80% of the current variation and kinetic energy over GB, with
maximum M, currents on top of the bank exceeding 100cm/s. Using a finite-element numerical
model with 2-6 km resolution, Lynch and Naimie (1993) simulated the 3-D structure of the M, tide
in the entirce GOM/GB domain. They found that computed tidal currents generally were in good
agreement with observations, with overall averaged ellipse deviations of about 6.1 and 4.7 cm/s for
major and minor axes, and about 10° and 8° for phase and orientation. Their model experiments
also showed that the ellipse deviations varied with horizontal resolution, about 17-50% larger for
a coarser mesh than with a finer mesh.
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Fig. 3. Satellite images of sea-surface temperature on July 12 and August 1, 1997 in the Gulf of Maine and Georges Bank.
These two figures were directly downloaded from the web site (http://rossby.sr.unh.edu/datasets/sst).
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Summer satellite sea-surface temperature (SST) images generally revealed a relatively cold-water
area within the tidal mixing frontal zones on GB and NS (Fig. 3). Loder and Greenberg (1986)
showed that tidal mixing was sufficiently strong over the crest of GB to keep the local water column
vertically well mixed throughout the year. Based on a tidally driven 2-D primitive equation model,
Chen and Beardsley (1998) found that the tidal mixing varied spatially across GB. The cold-water
band was thought to be formed by the spatial variation of tidal mixing related to local topography
and bottom roughness acting on the ambient summer stratification.

Recently, Roworth and Signell (1998) complied a new high-resolution (15s in latitude and
longitude spacing, corresponding to roughly 0.4-km spacing) USGS bathymetric database for the
GOM/GB domain. We used this new data set to configure our 3-D model, and then used this
model to re-examine the influences of bottom topography on tidal simulation and the formation of
residual circulation and tidal mixing fronts over Georges Bank. The rest of this paper describes the
3-D numerical model and experimental design, and results of tidal simulation, tidal mixing fronts,
and 3-D residual circulation. The dynamics of tidal mixing are studied in Section 5. Effects of the
irregular bottom topography and dynamical robustness of the 2-D model are discussed in Sections
6 and 7. A discussion of the cross-frontal secondary residual circulation is given in Sections 8 and 9.

2. The numerical model

The numerical model used in this study is the ECOM-si version of the 3-D coastal ocean
circulation model developed originally by Blumberg and Mellor (1987). The model incorporates
the Mellor and Yamada (1974, 1982) level 2.5 turbulent closure scheme as modified by Galperin et
al. (1988) to provide a time and space-dependent parameterization of vertical turbulent mixing
(MY2.5). This model uses the o-coordinate in the vertical and curvilinear orthogonal coordinates in
the horizontal. A semi-implicit scheme developed by Casulli (1990) is used for numerical computa-
tion, which treats the barotropic pressure gradient in the momentum equations and the velocity
convergence in the continuity equation implicitly. The semi-implicit model is described in detail by
Blumberg (1994), and a brief description is given below.

In an orthogonal curvilinear and o-coordinate system, the primitive transport equations and
equation of state are
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where &; and &, are the horizontal curvilinear orthogonal coordinates; u, v, and w are the &;, &,,
and ¢ velocity components, 0 the potential temperature, f the Coriolis parameter, g the gravi-
tational acceleration, K,, the vertical eddy viscosity coefficient, K, the thermal vertical eddy
diffusivity, S, the reference salinity, p, the reference density, p the perturbation density, #; and
h, the metric factors of the coordinate transformation on the &; and &, axes, and D = { + H the
total water depth, where { and H are the surface elevation and reference depth from z =0,
respectively. F,, F,,and F, represent horizontal momentum and thermal diffusion terms. To
simplify the model calculations, the reference salinity S, is kept constant so that density is solely
a function of temperature.
The true vertical velocity w on a ¢ surface is calculated by

_ 1 oD ol oD o oD ¢
w=w— i |:h2u<0(3§1 + a§1> + h1v<0652 + 3z, >} — <65t + 5t>’ (6)
The vertical eddy viscosity and diffusion coefficients are calculated using the MY2.5 turbulent
closure scheme, which includes (1) shear and buoyancy production of turbulent kinetic energy

(TKE), (2) TKE dissipation, (3) TKE vertical diffusion, (4) TKE advection, and (5) temporal
evolution of the TKE and turbulent macroscale. The 3-D equations for ¢g* and ¢*[ are given by
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where ¢* = (u'? + v'?)/2 is the turbulent kinetic energy, / the turbulent macroscale, K, the vertical
eddy diffusion coefficient of the turbulent kinetic energy, F, and F, represent the horizontal
diffusion of the turbulent kinetic energy and macroscale, P, = K,,/D*[(0u/do)* + (dv/05)*], and
Py, = (gK4/Dps) (0p/da) the shear and buoyancy production terms of turbulent kinetic energy,
¢ = 0.06¢°/I the turbulent kinetic energy dissipation rate, W = 1 + 1.33/?/(xL)* a wall proximity
function, where L™ =({ —z)" ! + (H + 2z)~ !, k = 0.4 the von Karman constant. In general,
F, and F; are kept as small as possible to reduce the effects of horizontal diffusion on the solutions.
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The turbulent kinetic energy and macroscale equations are closed by defining
K., =19S,. K,=1gS,, K,=02q. 9)
S,, and S,are defined as the stability functions

0.39 — 3.89G, 0.49

Sn = T 38686, — 101G, ™ 5" = T-34660,

(10)

where G, = (I*g/q*poD) (0p/0s). In the original MY2.5 turbulent closure model (Mellor and
Yamada, 1974, 1982), S,, and S, are functions of the gradient Richardson number. By removing
a slight inconsistency in the scaling analysis, Galperin et al. (1988) simplified the MY turbulent
closure model so that S,, and S,depend only on G;,. G, has an upper bound of 0.023 for the case of
unstable (p, > O)stratification and with a lower bound of — 0.28 for the case of stable (p, < 0)
stratification.

The surface and bottom boundary conditions for momentum and heat are

poKy (Ou dv a0 B _
D <%, %> = (Tox> Toy)» i 0, =0 ato=0,
K, [ou 0 00 (11)
D <%, %> = (Toxs Toy)s % 0, w=0 ato 1,

where (toy, Toy) and (Tpy, Tvy) = Car/u? + v*(u, v) are the &; and &, components of surface wind and
bottom stresses. The surface wind stress is calculated based on the neutral steady-state drag
coefficient developed by Large and Pond (1981). The bottom drag coefficient Cq4 is determined by
matching a logarithmic bottom layer to the model at a height z,, above the bottom, i.e.

2
Cy = max [k2/1n<@> ,0.0025}, (12)
Zo
where z, is the bottom roughness parameter, and z,, is the height above the bottom of the first
velocity (u, v) grid node.
The surface and bottom boundary conditions for the turbulent kinetic energy and macroscale
equations are

q*?l=0, ¢>=B33uZatz={ andq’ =0, q¢*>=B}33 atz= —H, (13)

where u,, and u,, are the friction velocities associated with the surface and bottom stresses,
respectively, and B; an empirical constant equal to 16.6.

The value of z, is thought to vary widely within the GB/GOM domain, especially over the
shallow top of Georges Bank where very large (up to 10-m high) sand waves exist and some areas
are covered with gravel. The estimation of z, versus ratio of the orbital wave velocity to the current
speed over GB varies in a wide range from 0.1 to 35mm (Werner and Beardsley, 2000). Based on
“law of the wall” log profile fits to near-bottom currents measured at ST1 (40°51.8’, 67°33.5"),
Werner and Beardsley (2000) suggest that z, = 0.6 mm is a good estimate for the sandy mid-shelf
region around the ST1 site on the southern flank of GB.
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In previous model studies of GB, z, has varied widely. In Chen et al. (1995a), z, = 1.0 mm, and in
Naimie (1996), C4 was specified as a constant value of 0.005 and z,, = 1 m, which was equivalent to
a setting of zo = 3.5mm. In the updated version of the Princeton Ocean Model (POM), z, is taken
as a function of water depth (D), such that z, increases as D decreases. We have chosen z, = 0.6 mm
for our 3-D model experiments. To examine the sensitivity of tidal simulation to z,, we also have
conducted numerous experiments using a wide range of z, or z, as a function of depth.

The numerical domain covered the GOM/GB region and was enclosed by an open boundary
running from the New Jersey shelf to the Nova Scotia shelf (Fig. 4). The orthogonal curvilinear
coordinate system was chosen to give better horizontal resolution over the GOM/GB, varying
from 1.5 to 3km over GB and in the interior region of the GOM expanding to 4-20 km near the
open boundary. Based on Chen et al. (1995a) and Haney (1991), uniform grid spacing was used in
the vertical to reduce g-errors over steep topography. Most experiments were conducted with 31
g-levels, providing 1.3-4m vertical resolution over the depth range 40-120m on GB and 10-m
spacing over the off-bank depth of 300 m. (Some experiments were repeated with 61 o-levels, with
little difference in the results.) The bottom depth at each model grid point was interpolated directly
from the new USGS bathymetry database. The model time step was 414 s, which resulted in 108
time steps over a M, (12.42h) tidal cycle.

The model was forced along the open boundary by the surface M, elevation and phase taken
from the global 0.5° x 0.5° inverse tidal model of Egbert et al. (1994). A gravity-wave radiation
condition on current was applied at the open boundary to minimize energy reflection into the
computational domain. To examine the influence of wind forcing during summer conditions,
a mean northeastward wind of 3 m/s was used in the model experiments.

46° I ! L 1 I I I
\ad
4 G g
i
o7
=
44°
Q
B 427 ;
k=
1
o 7 ,(,NGIS‘--"N |-
40° 4
=
i
38° L : P T T T T T ‘ | T T ' \ '
76 74 72° 70° 68° 66° 64° 62° 60°

Longitude

Fig. 4. The numerical model horizontal orthogonal curvilinear coordinate system.
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To facilitate comparison with the 2-D model results presented by Chen et al. (1995a), we ran the
3-D model as an initial value problem with homogeneous and early summer stratification. The
initial summer temperature distribution was specified by a linear function of z, with a value of 15°C
at the surface and 6°C at a depth of 300 m. The resulting initial Brunt Vaisila frequency N for this
case is 107 %s ™1, which is typical of early summer (late May or early June) stratification over GB.

3. The M, tidal simulation

To test the capability of our 3-D model for tidal simulation, we ran the model for homogeneous
conditions with tidal forcing, and found the predicted currents over GB were especially sensitive to
the choice of z,. Forced directly by the global tidal elevation and phase along the open boundary,
the model tended to overestimate the tidal elevation and current amplitudes over GB as z, was
decreased. A good comparison between the model predicted and observed elevations and tidal
currents was found for the case with 0.6 mm <z, < 10mm {using a depth-dependent form of
zo where zop = 10mm as D < 60 m and z, = 10[1 + (60 — D)/D] (mm)}. As we will see in Section 5,
such large values of z, lead to significant overestimation of turbulent dissipation ¢ in the mixed
region, exaggerating the strength of tidal mixing. Alternatively, we reduced the amplitude of the
tidal forcing at the open boundary by about 10% and ran the model with the constant value
zo = 0.6 mm. The model then provided a reasonable simulation of tidal elevation and current as
well as turbulent dissipation in the mixed region over GB. The model-data comparisons described
below are based mainly on this adjusted experiment.

The computed tidal elevation and currents were compared directly with previous observations
taken at stations shown in Fig. 5. The model predicted that the M, surface tide propagated into the
GOM from the open ocean and turned clockwise to the northeast with an amplitude increase from
50 cm over GB to 300 cm or higher in the Bay of Fundy (Fig. 6). The tidal phase was almost parallel
to the major axis of GB and then turned clockwise within the GOM. The model-predicted spatial
distributions of co-amplitude and co-phase are in good agreement with observed co-tidal charts
drawn by Moody et al. (1984). Detailed comparison between computed and observed amplitudes
and phases is given in Table 1. The overall deviation at 38 tidal measurement stations was 3.6 cm in
amplitude and 4.2° in phase. On GB, the difference at most stations ranged from 1 to 3cm in
amplitude and 0.4 to 5° in phase. Relatively large amplitude difference was found at stations 19, 25,
and 30 (around the northwestern GOM coast). This is likely caused by low horizontal model
resolution along the coast as suggested by Lynch and Naimie (1993).

Tidal currents exhibited a rotary character over GB, increasing northward across the bank, from
a maximum velocity of 30cm/s at the shelf break on the southern flank to about 100 cm/s at the
crest. The model-predicted tidal current ellipses were in good agreement with observations at
selected measurement stations over GB (Moody et al., 1984; Brown, 1984; Butman and Fry, 1990;
Chen et al., 1995b; Werner and Beardsley, 1999) (Fig. 7 and Table 2). The overall deviation at 32
stations was 4.1 cm/s in major axis, 3.6 cm/s in minor axis, and 6.4° in orientation, which are around
the maximum error bars of current measurements.

The vertical structure of the computed M, tidal current coincided well with observations at
selected stations A (#25), K (#27), and P3 (# 24) on the southern and northeastern flanks of GB
(Fig. 8). When the depth-dependent form of z, was used with the unadjusted tidal forcing, the
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Fig. 5. Selected stations for the model-data comparison of tidal elevation (upper) and current (lower). The data sources
used in the comparison include Moody et al. (1984), Butman and Fry (1990), Chen et al. (1995b), and Werner and
Beardsley (1999).

model predicted increased vertical current shear at three stations where z, = 7.1 (A), 9.3 (K), and 10
(P3) mm, which showed a little better agreement with the observed current profiles.

Our 3-D model simulation of tidal elevation and currents over GB is generally consistent with
previous model tidal predictions made by Greenberg (1983) and Lynch and Naimie (1993).
However, like some other 3-D model studies, this model also failed to simulate closely the tidal
amplitude in the Bay of Fundy, due in part to the coarsely resolved bottom topography used in that
region.



C. Chen et al. | Deep-Sea Research II 48 (2001) 419-456 429

45°

5
i,

Latitude(degree)

5
\
‘.
o

_____ Co-phase(degree)
- Co-amplitude(cm)

39° T T T J T ’ T J T
72° 70° 68° 66° 64°
Longitude(degree)

Fig. 6. The model-predicted co-tidal chart of the M, tidal elevation. Co-amplitude (cm) and co-phase (degree) lines are
plotted every 50 cm and 30°, respectively.

We found that the tidal current simulation on Georges Bank was significantly improved when
the high-resolution topography data were used, and that the results were sensitive to the value and
spatial dependence of z,. This is not an unexpected result, since tidal modelers have long used z,
(or Cq4) as a tunable parameter to obtain the best fit between observed and model tides. What is
interesting here is the further influence of spatial variation of z, on the prediction of tidal

dissipation and mixing.

4. Tidal mixing fronts and residual circulation

To examine how stratification and tidal mixing influence the clockwise residual circulation over
GB and adjacent coastal regions of the GOM, we ran the model with the adjusted M, forcing for
both homogeneous and early summer stratification cases. The residual currents were calculated by
averaging over one tidal cycle after the tidal currents and temperature reach a quasi-equilibrium
state (5 days for homogeneous case and 10 days for the stratification case).

4.1. Homogenous case

With no stratification, the model predicted a topographically controlled clockwise residual
circulation around GB and Browns Bank (BB) and a strong southward residual current over NS
(Fig. 9). Over GB, the water flowed eastward to southeastward as a strong jet with a maximum
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Table 1

Comparison of observed and computed M, tidal elevations at reference sites®

C. Chen et al. | Deep-Sea Research II 48 (2001) 419-456

Site Amplitude (m) Phase (°G)
Lo Lo AL $o b, Ad
1 185.9 185.1 0.8 67.1 66.0 1.1
2 159.1 155.4 3.7 56.4 59.0 —26
3 168.2 163.2 5.0 62.2 63.0 —038
4 125.0 120.4 4.6 47.0 52.0 —-50
5 44.0 458 —1.8 10.2 4.0 6.2
6 44.0 442 —-0.2 15.5 9.0 6.5
7 50.4 452 5.2 27.9 24.0 3.9
8 159.1 154.9 42 87.4 93.0 —56
9 38.7 39.6 —-09 5.3 2.0 33
10 45.6 41.0 4.6 37.6 38.0 —04
11 91.9 88.3 3.6 85.0 87.0 —-20
12 151.2 150.0 1.2 95.1 98.0 —-29
13 78.7 75.8 2.9 98.5 93.0 —35
14 83.0 78.2 4.8 90.7 92.0 —13
15 37.0 40.5 —35 24 356.0 6.4
16 371 40.5 —34 2.3 355.0 7.3
17 373 38.9 — 1.6 6.3 1.0 5.3
18 394 39.6 —0.2 25.1 22.0 3.1
19 136.4 130.3 6.1 95.8 99.0 —32
20 125.5 120.0 5.5 96.4 98.0 — 1.6
21 38.0 38.9 —0.9 11.3 6.0 53
22 38.0 38.9 —-09 11.3 5.0 6.3
23 39.8 39.9 —0.1 23.2 18.0 5.2
24 138.9 133.0 5.9 100.3 103.0 —2.7
25 1335 127.2 6.3 101.8 103.0 —12
26 26.1 259 0.2 48.9 47.0 1.9
27 31.5 314 0.1 8.7 3.0 5.7
28 108.6 103.2 5.4 111.5 102.0 9.5
29 119.1 116.0 3.1 108.8 113.0 —42
30 1379 130.3 7.6 103.2 107.0 — 338
31 384 419 —35 355.2 349.0 6.2
32 31.0 323 —1.3 1.5 1.0 0.5
33 38.7 38.7 0.0 358.0 356.0 2.0
34 139.0 134.5 4.5 106.4 111.0 —46
35 40.8 38.7 2.1 3554 353.0 2.4
36 39.6 404 —0.8 356.3 354.0 2.3
37 41.5 42.0 —0.5 353.9 353.0 0.9
38 42.0 41.9 0.1 353.7 351.0 2.7
Overall deviation 3.6 4.2

2o and ¢, are the observed amplitude and phase, and {, and ¢.are the computed amplitude and phase.
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Fig. 7. Comparison between measured and computed M, tidal currents at selected tidal stations over GB, GSC, and the
NEC. The measurement depth of the tidal current is listed in Table 2.

speed of about 14-16 cm/s along the northern flank, then flowed to the southern flank along two
main paths between the 40 to 60 m isobaths and along the 100-m isobath as relatively weak and
broader flows with maximum speeds of about 3-5cm/s. These weak flows then turn back
(recirculate) to the northwest and northern flanks mainly along the 40-60-m isobaths. The residual
current was surface-intensified, and significant upwelling of about 0.01 cm/s was found on the slope
of the northern flank.

Unlike the cases with smoothed bottom topography shown in previous model efforts (e.g.,
Greenberg, 1983; Naimie, 1996), the model predicted several small-scale clockwise circulation
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Table 2
Comparison of computed and observed M, tidal ellipse parameters®

C. Chen et al. | Deep-Sea Research II 48 (2001) 419-456

Site Instr. Umajor Umajar AU Uminor Uminar AU (Z)orien d)orien Ad’
depth (m) (cm/s) (cm/s) (cm/s) (cm/s)  (cm/s) (cm/s) (deg-G) (deg-G) (deg-G)
1 Averaged 25.8 305+ 1.1 —47 3.6 44407 —08 1184 122.8 £ 0.8 —44
2 Averaged 33.0 219 +0.8 11.1 4.0 1.9+0.3 21 1156 1292 +0.8 —13.6
3 Averaged 460 454+ 1.6 0.6 —55 —60+10 05 1014 103.5+ 09 —-21
4 Averaged 40.5 394+ 14 1.1 —-70 —82+14 1.2 93.6 9574+ 1.0 —21
5  Averaged 27.6 26.5+ 0.9 1.1 —27 —39406 1.2 95.6 100.6 + 1.0 —-50
6 10 723 7324+31 —-09 —352 —289+18 —63 90.0 86.7 +2.0 33
7 10 71.2 71.5 —-03 =291 —266 —25 78.9 79.8 —-09
8 10 73.7 75.4 —-17 =306 —271 —35 70.7 68.1 2.6
9 10 76.8 76.5 03 —457 —416 —4.1 103.0 103.7 —0.7
10 10 70.5 70.5 00 —404 —350 —54 108.7 106.6 2.1
1 10 44.3 43.1 12 —263 —288 2.5 1103 110.7 —04
12 36 65.6 588 +1.0 68 —457 —4194+09 —38 1192 120.0 —-0.8
13 10 420 395422 25 =306 —259420 —47 1241 123.0 1.1
14 71 36.7 330+ 14 37 —235 —1814+11 —54 1206 106.0 14.6
15 Averaged 46.0 46.0 00 —303 —260 —43 1192 122.0 —238
16  Averaged 49.5 47.0 25  —324 —300 —24 1191 122.0 —29
17 15 68.4 631+ 14 53 —426 —4354+07 09 1230 1240 + 1 - 1.0
18 79 53.7 55.5 —-1.8 —224 227 03 136.7 141.0 —43
19 19 84.8 91.9 —7.1 —512 —519 0.7 1195 119.0 0.5
20 36 76.4 732 +0.3 32 —461 —4554+404 —0.6 1248 126.0 + 3 —12
21 77 17.7 12.5 5.2 —26 —36 1.0 1348 149.0 —14.2
22 75 49.9 44.3 56 —194 —177 —1.7 1363 140.0 —37
23 30 84.6 848+21 —-03 —392 —-300+07 —92 119.1 117.0+£5 2.1
24 30 84.7 87.1 —24 —490 —449 —4.1 1184 110.0 8.4
25 45 404 383+ 1.6 2.1 —283 —260+16 —23 1195 119.0+3 0.5
26 15 84.0 743 + 04 97 —638 —556+12 —82 1101 1140+ 1 -39
27 10 56.4 55.1 1.3 —386 —387 0.1 121.1 122.0 —09
28 15 419 395+ 3.1 24  —171 —193+23 22 129.1 133.0+5 -39
29 79 274 26.7 + 0.6 07 —144 —-122+08 —22 78.9 59.0+5 19.9
30 207 44.1 478408 —37 —103 —114+18 1.1 1499 143.0 + 4 6.9
31 106 45.0 486+01 —-36 —104 —116+14 1.2 146.5 141.0 +£2 5.5
32 112 539 579 +29 —40 —201 —155439 —46 1460 1420+0 4.0
Overall deviation 4.1 3.6 6.3

*Umajors Uminor> and @yien are the computed major and minor axes, and orientation.

gyres over the top of GB within the 60-m isobath as a result of the locally varying topography.
This residual circulation pattern also was much more complicated than that predicted by
Lynch and Naimie (1993) in a case with 2-3km resolution and un-smoothed bottom
topography.

A closed clockwise residual circulation was also found over BB, but the current was much
weaker (less than 5cm/s). Over NS, the residual current flowed southward and then westward
along the local topography. The maximum speed of this current was about 10 cm/s.
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Fig. 8. Comparison between measured and computed amplitudes of tidal currents at stations numbered 25 (A), 27 (K),
and 24 (P3) (Fig. 5). The solid and dashed lines present the model tidal current amplitude for the cases with zo = 0.6 mm
everywhere and zo, = z¢(D). The filled squares indicate individual tidal current values at each station.

4.2. Stratified case

When early summer stratification was included, tidal mixing created well-defined tidal mixing
fronts around GB, BB, and over NS (Fig. 10a). Over GB, the front was characterized by a narrow
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Fig. 10. Maps of tidally averaged surface temperature (0 in °C ) over Georges Bank and adjacent regions for the cases
with (a) only tidal forcing and (b) tidal plus wind forcing.

zone at the 40-m isobath on the northern flank and a relatively wider region between the 50 and
60-m isobaths on the southern flank. Over NS, the water was vertically well mixed over the
shallower region around Martha’s Vineyard. A well-defined front was located along the 60-m
1sobath, which connected to GB across the GSC. The frontal zone on the southern flank of GB was
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Fig. 11. Maps of tidally averaged near-surface residual current vectors over Georges Bank and adjacent regions for the
cases with (a) only tidal forcing and (b) tidal plus wind forcing.

characterized by a relatively cold water band, with a minimum temperature on the eastern side of
the bank. A similar cold water zone was found on NS through the GSC, which is consistent
with the summertime SST images shown in Fig. 3. The existence of relatively cold water regions is
due to vertical tidal mixing. Strong M, tidal currents tend to mix the local water column in the
region shallower than 60 m over GB. Since tidal mixing starts at the bottom and grows upward
locally, the vertically well-mixed water should be colder in a deeper region than at the crest during
summer.
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Fig. 12. Cross-bank distribution of the tidally averaged temperature (), eastward (), northward (%), and vertical current
() on section 1 (shown in Fig. 1) for the case with only tidal forcing. The contour interval is 0.2°C for 0, 2 cm/s for i and b,
and 2 x 1073 cm/s on the northern flank and 0.5 x 10~ 2 cm/s on the southern flank for w.

The formation of tidal mixing fronts significantly enhanced the residual current within the
frontal zones. Over GB, the along-bank current increased to 28-30 cm/s on the northwestern flank,
20-25cm/s on the northern flank, and 5-8 cm/s on the southern flank (Figs. 11a and 12). The model
predicted three main re-circulating paths of stratified residual flow on the northeastern part of GB:
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(1) along the 40-m isobath, (2) between the 40 and 60-m isobaths, and (3) along the 100-m
isobath. Small-scale clockwise residual flows in the region shallower than 60m on the
top of GB also became much stronger compared with those in the homogeneous case. Also,
several small-scale eddy-like residual flows were found at the southern shelf break, which led
to the formation of isolated warm cores at the outer edge of GB (Figs. 10a). Over NS,
the southward residual current increased to 10-15cm/s on the southwest flank of
Cape Cod. A significant on-shelf component of residual flow was found on the eastern NS
shelf, which may be due to the local irregular topography. The northward direction of
the model-predicted current along the western shelf side of the GSC is in the opposite direction in
comparison to ADCP current measurements (Chen et al., 1995b). This is likely due to the lack of
a low-salinity surface plume in our numerical experiments which normally forms each spring as
a result of local river runoff into the GOM and the around-Gulf flow of low-salinity water from the
Scotian Shelf.

The model predicted residual circulation patterns over GB and NS were consistent qualitatively
with the summertime drifter trajectories found by L&B and quantitatively with ADCP current
measurements reported by Chen et al. (1995b). Both model and drifter data showed a narrow
current zone on the northern flanks and three relatively strong re-circulation paths on the eastern
side of GB. Small-scale drifter experiments, conducted on the southern flank during late spring of
1995 and 1997 by Churchill and Manning (1997) (C&M) show that their drifters tended to converge
toward the southern tidal front at speeds up to 8 cm/s. This kind of on-bank convergent flow was
evident in our 3-D model results, although it was a little weaker than the observed drifter velocities.
Both drifter and moored current meter data show a strong jet current of about 30-40cm/s on the
northern flank, which was about 5-10cm/s larger than the model-predicted value here. This
difference may be due to the lack of seasonal heating in the model, which will be discussed in detail
in a later paper by Chen et al. (2000).

Model-predicted cross-frontal secondary circulation varied with the slope of the bottom top-
ography over GB (Fig. 12). On the northern flank, a bottom-intensified double cell flow occurred,
with a front-ward convergence near the surface and a divergence near the bottom. The maximum
vertical residual velocity was about 0.03 cm/s in the downwelling and upwelling regions. The center
of the near-surface convergence was located at the axis of the maximum along-bank residual
current within the front. On the southern flank, the cross-frontal secondary circulation was
characterized by an asymmetric double cell circulation, with a divergence at the edge of the front
near the surface and a convergence at the top of the bottom mixed layer. Two branches of
upwelling were noticeable within the southern frontal zone: one was along isopycnals at the top of
the bottom mixed layer and another was along in the lower part of the on-bank edge of the front.
These two upwelled waters merged near the surface at the edge of the front, causing a maximum
upward vertical velocity of 0.006 cm/s at a depth of about 15 m below the surface. In addition, the
cross-bank secondary current above and below the bottom mixing layer in the stratified region
over the southern flank was characterized by multiple circulation cells. These cells were stronger at
the shelf break where the bottom was steep and become weaker as the thickness of the bottom
mixing layer increases due to strong mixing. A clockwise circulation cell also was noticed within the
relatively cold zone between the 38 and 52 m isobaths. It is a result of the local variable bottom
topography, because it disappeared in the case with smoothed topography, which eliminated such
local variations.
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4.3. Wind effects

A northeastward wind of 3 m/s was applied on the model after the equilibrium residual flow state
was reached. Over GB, this wind forcing reduced the near-surface, on-bank convergence current
along the 60-m isobath on the southern flank and enhanced the eastward current on the
northeastern flank near the GSC (Figs. 11b and 13). Although no significant change in the
magnitude of along-bank residual current was found on the southern flank of GB and over NS
(Figs. 10 and 11), the vertical temperature structure within the frontal zones was modified due to
wind mixing. The water around the 60-m isobath on the southeastern side of GB and over NS was
about 0.1°C colder than in the case of tidal forcing only. This cooling was caused by both surface
wind mixing and wind-induced upwelling along the isopycnals above the bottom mixed layer.

4.4. The northeastern flank

The northeastern flank was characterized by stronger tidal mixing due to the steeper bottom
slope and stronger tidal currents. This is an area connecting with the NEC where low-salinity water
intrusions from the Scotian Shelf/Browns Bank area have been observed (Bisagni et al., 1996). In
our 3-D model with simple forcing, the residual along-bank current split. On the cross-isobath
transect near the splitting point, the model predicted a sub-surface intensified, along-bank residual
current and relatively strong on-bank convergent flow at the tidal mixing front (Fig. 14a). Strong
upwelling was found at the axis of the along-bank current jet, with a maximum just below the core
of the current jet. The cross-isobath secondary circulation was characterized by a double-cell flow,
with divergence at the axis of the along-bank current jet and convergence on both sides of the jet at
the surface. Near the bottom of the slope, the current was dominated by relatively strong
downwelling, with a maximum of 0.03cm/s at a depth of about 125m. This cross-isobath
circulation pattern is significantly different from those on the southern and northern flanks shown
in Figs. 12 and 13, and was little modified by the summertime mean wind (Fig. 14b).

4.5. Comparison between model and empirical-predicted tidal fronts

Simpson and Hunter (1974) examined the physical mechanisms responsible for tidal mixing and
the formation of tidal mixing fronts, and found that tidal mixing was proportional to the parameter
h/U? or log,o(h/D,) where h is the local water depth, U a typical tidal current amplitude, and D, the
tidal kinetic energy dissipation rate (D, = pCqU?> where Cq4 is the drag coefficient). Loder and
Greenberg (1986) presented a map of log, o (h/D,) for the GOM based on a 2-D (vertically averaged)
tidal numerical model and the vertical density difference based on hydrography. They found that
the location of the tidal mixing front (as defined by a difference in sigma-¢ < 0.5 over the top 50m)
coincided well with the log;o(h/D,) = 1.9 contour over Georges Bank and adjacent coastal regions.
Chen et al. (1995¢c) compared the location of the tidal mixing front predicted by satellite SST
images, hydrographic data, and log;¢(h/D,), and found that the observed tidal mixing front was in
better agreement with the 2.1 contour than the 1.9 contour in the GSC, where a continuous frontal
zone was found along the shallow sill across the GSC.

We also used the 3-D model output and topography to calculate log,,(h/D,) for comparison
with the location of the tidal mixing front predicted by our model for early summer stratification.
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Fig. 13. Cross-bank distribution of tidally averaged temperature (0), eastward (), northward (v), and vertical current (w)
on section 1 for the case with tidal plus wind forcing. The contour intervals are the same as in Fig 12.

Good agreement was found between the location of the tidal mixing front and log,o(h/D,) = 2.1
over the outer banks (GB, NS, BB), and the Nova Scotia shelf off Cape Sable (Fig. 15). It should be
pointed out here that the present model did not include other semidiurnal tidal constituents (such
as S,, N,, and K, etc). These tidal components generally accounted for 10-20% of total tidal
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Latitude

Longitude

Fig. 15. Comparison of the tidal frontal locations predicted by our model and log;o (h/D;). The color code indicates the
model-predicted surface and bottom density difference for early summer stratification. The solid lines are the contours of
logio(h/D,) = 1.9 and 2.1.

dissipation D,. Therefore, the location of the tidal mixing front could vary within log;o(h/D,) = 1.9
and 2.1 from spring to neap tidal cycles.

5. Tidal mixing

Vertical mixing in our model was computed using the MY2.5 turbulent closure model. In this
model, the vertical eddy viscosity K,, is determined by the product of the turbulent kinetic energy ¢,
the turbulent macroscale /, and the stability function S,,. ¢ and / are functions of the magnitude of
vertical shear of the horizontal current and vertical gradient of density, while S,, depends on the
vertical density gradient. Physical processes that control the temporal and spatial variations of
g and [ include (1) the shear production of turbulence (P); (2) the buoyancy production of
turbulence (Py,); (3) dissipation (&); (4) advection; and (5) vertical diffusion.

5.1. Vertical eddy viscosity

The model showed that tidal mixing varied periodically with the magnitude and direction of the
cross-bank tidal current (Fig. 16). At site C1 on the southern flank, where the water was stratified,
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strong tidal mixing occurred only in the bottom boundary layer, a 25-30 m thick layer above the
bottom. The vertical eddy viscosity K,, varied asymmetrically with tidal current, larger during the
on-bank tidal flow as the colder water was advected upslope than during the off-bank tidal flow as
the warmer water was pushed downslope. The maximum K,, was about 0.06m?/s, occurring at
a middle depth of the bottom boundary layer after maximum on-bank tidal flow. At site C2 on top
of the bank, where the water was vertically well mixed, K,, was characterized by a parabolic curve
in the vertical, with a maximum at a depth of 15m above the bottom, just a little lower than the
middle water depth. K,, also varied in magnitude with the magnitude and direction of the tidal
current, with a maximum value of about 0.06 m?/s during the on-bank flow and about 0.05m?/s
during the off-bank flow.

At site C3 on the northern flank, tidal mixing exhibited a much more complex time-dependent
pattern. The cross-bank tidal current was asymmetrical in time. The maximum current occurred at
a depth of about 20 m during the on-bank flow, but in a layer of about 30-50 m during the off-bank
flow. The off-bank flow acted like a waterfall to advect warmer water down-slope with a displace-
ment of 50 m, resulting in a relatively sharp thermal depression at the edge of the northern flank
after maximum off-bank flow. Correspondingly, the resulting K,, was large, with a maximum of
about 0.01 m?/s at a depth of 10 m below the surface. The temporal variation of K,, at the bottom
was very similar to that found on the southern flank, larger during the on-bank flow as the colder
water was advected up-slope than during the off-bank flow as the warmer water was pushed
down-slope. The maximum value of K,, was about 0.04m?/s, occurring about 2h after the
maximum on-bank flow.

Strong tidal mixing over GB was mainly caused by shear instability of the tidal currents (i.e.,
shear production). The Richardson number R; was less than 0.2 in the bottom boundary layer at
the stratified site on the southern and northern flanks, and 0.1-0.2 everywhere in the vertically
well-mixed crest site. A small Richardson number of less than 0.25 also was found in the upper 20 m
after the maximum off-bank tidal mixing, which coincided well with timing of the relatively strong
tidal mixing there.

5.2. Balance of turbulent kinetic energy

Comparison of the magnitude of terms in the turbulent kinetic energy equation revealed that the
temporal variation of the turbulent kinetic energy ¢*> over GB was controlled by two dominant
terms: turbulent shear production (P,) and dissipation (¢). At three selected sites on the southern,
top, and northern flanks of GB, for example, P, and ¢ had maximum values of about 107> W /kg at
the bottom and decayed upward. P, was balanced approximately by ¢ at each time step and thus on
average over a tidal cycle (Fig. 17). Buoyancy production (P,) was about one order of magnitude
less than P, and the advection and vertical diffusion terms in the TKE equation were one or two
orders of magnitude less than P,. These relative balances were found at other sites examined over
the bank. Based on these results, we conclude that tidal mixing over a 3-D GB can be generally
characterized as a 1-D process with a basic local balance between shear production and dissipation.

The time variation of P, g2, and P, at these three selected sites showed that on the northern
flank, the formation of the thermal depression during the offbank flow tended to create a positive
P, and a negative P,. Since P, was one order of magnitude smaller than P, remarkably strong
mixing occurred during the off-bank flow due to an enhanced turbulent shear production. Near the
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bottom on the southern and northern flanks, timing of stronger mixing during the on-bank flow
coincided well with temporal variation of P,. During the on-bank flow, the upslope advection of
the colder water resulted in the gravitational instability and hence produced a positive Py, near the
bottom. Although P, was one order of magnitude smaller than Py, it directly increased S,, (the
stability function) and hence indirectly enhanced the vertical eddy viscosity after the maximum
on-bank flow. Similar results also were evident at the crest although the water was well-mixed
during most of the tidal cycle.

5.3. Comparison with observations and previous model results

The model-predicted asymmetry of tidal mixing during off- and on-bank tidal flows is evident in
recent observations on the northeastern flank of GB (Yoshia and Oakey, 1996; Horne et al., 1996).
This feature of tidal mixing predicted by this 3-D model was the same as that found in our 2-D
experiments (C&B), and also consistent with 3-D model results presented by Naimie (1996). C&B
suggested that the asymmetric tidal mixing during off- and on-bank tidal flows was caused by
gravitational instability that occurred when denser (colder) water was advected upslope over
lighter (warmer) water during on-bank flow. This mechanism was clearly evident in our 3-D model
experiments. C&B also revealed that on the northern flank, strong vertical mixing can occur after
the maximum off-bank flow as a result of a sharp thermal depression due to what appears to be like
a “hydraulic jump”. This feature also was found in our 3-D cases. These similarities in 2- and 3-D
model results are not surprising since the dynamics of tidal mixing over the central section of GB
(for these model conditions) is characterized by a local 1-D balance between turbulent shear
production and dissipation.

Naimie (1996) discussed the effects of tidal time variation on tidal mixing on the northeastern
flank. He proposed that relatively strong mixing could occur near the tidal transition from on-bank
flow to off-bank flow (and vice versa) due to tidal straining (because the phase of tidal currents at
depth leads those aloft). The vertical phase difference of tidal currents was also evident in both 2-D
(C&B) and current 3-D model experiments, and supported that tidal straining also contributed to
tidal mixing on Georges Bank.

Our 3-D model experiments suggest that the magnitude of ¢ depends sensitively on the bottom
roughness z,, with an increase in z, leading to an increased ¢. In the case with z, = 0.6 mm
everywhere and adjusted tidal amplitude on the open boundary, the model-predicted tidal-
averaged ¢ agreed with microstructure-based estimates at two well-mixed sites on the southern
(M) and northern (M,) flanks (Fig. 18; see Fig. 1 for site locations). In the case with zq = z4(D),
zo was equal to 10 mm at these two mixed sites. In this case, the model overestimated ¢, especially at
M (the southern flank mixed site) even though the model provided a good fit of the vertical profile
of the tidal current at stations A, K, and P3.

It is not surprising that the magnitude of ¢ on GB is sensitive to z, due to the essentially 1-D
nature of turbulent mixing on the bank. Increasing z, locally tends to enhance the vertical shear of

o
<

Fig. 16. Time series of cross-bank current (u), temperature (6), vertical thermal diffusion coefficient (K,,), Richardson
number (R;) over two tidal cycles at the three selected sites C1 to C3 near section 1 across GB for the case with early
summer stratification and tidal forcing only.
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Fig. 17. Time series of turbulent shear production (P;), dissipation (¢), kinetic energy (¢*) and buoyancy production (Py,)
over two tidal cycles at the same sites C1 to C3 near section 1 for the case with early summer stratification and tidal

forcing only.
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Fig. 18. Comparison between tidally averaged model (dashed lines) and turbulent dissipation rates estimated from
microstructure profile measurements (solid line) at two well-mixed sites (shown as M, and M, in Fig. 1). The observed
profiles of turbulent dissipation at the M, and M, with error uncertainties were digitized from Horne et al. (1996) and
Burgett et al. (1996), respectively.

the tidal current, and thus result in larger P, and ¢. Since z, over GB is thought to vary from values
like z, = 0.6 mm over the mid- and outer-shelf on the southern flank to values in excess of 10 mm
over the crest of the bank, any conclusions concerning comparisons between estimated and
model-predicted ¢ must be viewed with caution due to the significant experimental uncertainty in
estimated ¢ and the lack of detailed knowledge of the spatial distribution of z,.
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6. Effects of high-resolution bottom topography

To examine the sensitivity of the model residual currents over GB to the spatial resolution of the
bottom topography, the model runs were made using smoothed and non-smoothed bottom
topographies. Smoothing was achieved using a 9-point moving average over a 3 x 3 array of grid
points.

These two model topographies are shown in Fig. 2. For the case with early summer stratification,
the model with non-smoothed bottom topography predicted many small-scale residual circulation
patterns over the top of GB and at the shelf break (Fig. 19a). The water tended to flow along the
small-scale local isobaths in addition to following the large-scale clockwise residual circulation
around the bank. These small-scale structures were filtered out when the bottom topography was
smoothed (Fig. 19b). In addition, the model revealed a relatively strong on-bank residual flow on
the northwestern and northeastern flanks in the case with non-smoothed bottom topography,
while the residual current mainly flowed along the bank in the case with smoothed bottom
topography.

The different residual flow patterns found in these two cases suggest that over smoothing of the
bottom topography may result in an unrealistic residual circulation on GB. It also may lead to an
unrealistic estimation of the on-bank water transport and upwelling, particularly on the north-
western and northeastern flanks of GB. One objective of these experiments is to identify those
physical processes and flow features that are robust over a range of spatial resolution in bottom
topography from those which depend critically on the smallest-scale topography. We need
to determine the appropriate match between grid spacing and topographic resolution for the
processes being examined. The finite-element approach adopted by Lynch and co-workers
provides a more flexible method to achieve this match than the simpler coordinate system that we
have adopted. However, in both cases, the need to find the appropriate spatial match between grid
and topographic spacing is an essential key to studying various processes.

7. The 2- and 3-D model comparison

Both the 2- and 3-D model results suggest that tidal mixing over GB is primarily driven by
a local 1-D balance between turbulent shear production and dissipation. This result explains why
the 2-D model was found so robust in simulating the tidal mixing front over GB (C&B, Chen et al.,
1995a).

To check whether or not the 2-D model was robust to capture the basic dynamics of stratified
tidal rectification on GB, we examined the momentum balance along the cross-bank section 1
(shown in Fig. 1) for the 3-D case with smoothed bottom topography. In the case with early
summertime stratification, the model-predicted 3-D stratified residual circulation over GB exhib-
ited an equilibrium momentum balance between (1) cross-bank and vertical advection, (2) Coriolis
acceleration, and (3) vertical diffusion in the along-bank (x) direction, and between (1) cross-bank
and vertical advection, (2) Coriolis acceleration, (3) vertical diffusion, and (4) cross-bank gradients
of the surface elevation in the cross-bank (y) direction (Fig. 20). The along-bank gradient of
baroclinic pressure was too weak to be dynamically important. The along-bank gradient of the
surface elevation was one order of magnitude smaller than the cross-bank momentum advective
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Fig. 19. The surface distributions of temperature and residual current vectors over Georges Bank for the cases with
non-smoothed (a) and smoothed (b) bottom topographies.
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term vou/dy. Also, the along-bank advective terms udu/0x and udv/0x were smaller except near the
bottom of the steep northern slope where they were noticeable. To first order, the terms 0P/0x,
g0(/0x, udu/0x, and udv/0x can be ignored if the study was only focused on the frontal circulation
around the bank. This suggests that a 2-D model without the inclusion of along-bank variation
should be sufficiently robust to capture the basic process of stratified tidal rectification across GB
(Chen et al., 1995a).

8. Discussion

Our 3-D model experiments have revealed that tidal simulation and tidal mixing depend
sensitively on the bottom roughness parameter z,. This implies that a successful model for GB
should be capable of simulating not only tidal elevation and currents but also turbulent properties.
One of the goals of the US GLOBEC/Georges Bank Program is to study the cross-frontal water
transport over GB. To achieve this goal, one needs to know quantitatively the cross-frontal
Lagrangian circulation. Accurate estimation of the cross-frontal Lagrangian trajectories can only
be made when we can accurately predict the cross-bank tidal current and secondary residual
circulation. Previous studies have suggested that the pattern of cross-frontal secondary circulation
over GB depended critically on the turbulence parameterization (Wright and Loder, 1985). Our
model experiments with the MY2.5 turbulent closure scheme show that the simulation of turbulent
properties over GB is quite sensitive to the choice of z,y. It may be a bit premature to make any
positive or negative conclusions about the capability of MY2.5 to simulate complex flows in coastal
regions where z, can be quite variable.

On the other hand, our 3-D model has shown a reasonable simulation of tidal currents over GB
and turbulent properties in the mixed region of GB. Results from the 3-D model suggest that the
patterns of secondary cross-bank circulation vary significantly with different bottom topographic
slope, tidal mixing, and advection. A schematic of cross-bank secondary residual circulation is
shown in Fig. 21 with an understanding that these patterns may be only qualitatively meaningful.

On the southern flank, the model predicted upwelling almost throughout the water column from
the bottom at the tidal mixing front and from the deeper region along isopycnals at the top of the
bottom boundary layer (Figs. 21a, 12 and 13). This upwelled water diverged into both the
well-mixed and stratified sides of the front near the surface. A near-surface convergence region
existed on the stratified side and at the lower part of the saddle zone at the top of the bottom
boundary layer near the front. In the stratified region where the water depth was deeper than 75 m,
the cross-bank current was characterized by multiple closed-circulation cells. The model also
suggested a cross-frontal on-bank current near the bottom.

On the northern flank, the model predicted closed secondary circulation cells with a divergence
near the bottom on the slope and a convergence toward the front near the surface (Figs. 21b, 12
and 13). A center of the convergence area was located at the axis of the maximum along-bank
residual current. A cross-frontal on-bank residual flow was found near the bottom on the northern
edge of the bank.

On the northeastern flank (along section 2 shown in Fig. 1), the pattern of the secondary residual
circulation was similar to that on the northern flank but with an opposite current direction. The
current diverged on both sides of the axis of the maximum along-bank flow at the front near the
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tidal forcing only.
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surface and converged at a depth of 75m at the edge of the bank (Figs. 21c and 14). The surface
convergence zone was located in both stratified and mixed regions. A saddle point may exist near
the bottom of the slope between 75 and 90m, which can lead to a chaotic cross-frontal water
exchange near the bottom (Chen, 2000).

It should be pointed out here that the patterns of cross-frontal secondary residual circulation
summarized here are based on the distributions of the Eulerian residual current on sections 1 and 2
(Fig. 1). The Lagrangian residual circulation pattern on GB might differ significantly from the
Eulerian residual circulation, especially on the northern and northeastern flanks (C&B). The reality
of these circulation patterns needs to be verified directly from current measurements. Also, the
along-bank residual current, in general, is one order of magnitude larger than the cross-bank
residual current. The 3-D nature of the residual circulation needs to be considered when cross-
frontal water exchange is estimated

9. Summary

The influence of tidal and wind mixing on circulation and stratification over Georges Bank
(GB) and adjacent coastal regions of the Gulf of Maine (GOM) has been examined using
a 3-D semi-implicit version of the Blumberg and Mellor (1987) primitive equation ocean
circulation model with MY2.5 turbulent closure. The numerical domain covered the GOM/GB
region with an open boundary starting at the New Jersey coast and ending at the Nova Scotia
coast. The model provided a reasonable simulation of the M, tidal elevation and phase. The
model run as an initial value problem with early summer stratification exhibited tidal mixing fronts
around the 40-60 m isobaths over GB and Nantucket Shoals (NS), and 100-m isobath on Browns
Bank (BB).

The formation of tidal mixing fronts significantly enhanced the along-bank tidal rectified current
over GB and adjacent coastal regions. Over GB, the along-bank current increased to 30 cm/s on
the northwest flank, 20-25cm/s on the northern flank, and 5-8 cm/s on the southern flank. The
model predicted three main re-circulation paths of the stratified residual flow on the northeastern
flank of GB: (1) along the 40-m isobath; (2) between the 40-60 m isobaths; and (3) along the 100-m
isobath. The model-predicted pattern of residual circulation over GB was qualitatively (and to
a certain extent quantitatively) in good agreement with previous moored current meter and drifter
measurements.

The model predicted cooler water temperatures within the tidal mixing front near the 60-m
isobath along the eastern and southern flank of GB and in the shallow region of less than 60 m over
NS. These cold water zones tended to become cooler due to summer mean wind-induced mixing
and upwelling. The model-predicted location of the tidal mixing front and spatial distribution of
stratification were in good agreement with satellite sea-surface temperature (SST) images for GB
and were consistent with predictions made using the Simpson and Hunter (1974) energy argument.

The 3-D model simulations showed that tidal mixing and turbulent dissipation exhibit temporal
and spatial asymmetries over GB. For the simple initial conditions used in our experiments, tidal
mixing over GB can be characterized to lowest order by a 1-D local balance between turbulent-
shear production and dissipation. The magnitudes of turbulent-shear production and dissipation
clearly depend critically on the bottom roughness.
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The analysis of the momentum balance across the center section of GB in the 3-D model case
suggests that as a first-order approximation, the 2-D model captures the basic dynamics of the tidal
mixing front over GB. The numerical experiments with non-smoothed and smoothed bottom
topography indicate that over-smoothing of the bottom topography leads to a smoothed residual
circulation over GB, which may miss important smaller-scale circulation and mixing features. For
example, the qualitative nature of the on-bank water transport and upwelling, particularly on the
northwestern and northeastern flanks of GB, differed significantly between the smoothed and
non-smoothed cases. Additional research, including field measurements, is needed to determine
which flow pattern is more realistic, although we suggest the non-smoothed results are probably
closer to nature.

The model results suggest that the pattern of the cross-bank secondary residual circulation
varies significantly with different bottom topographic slope, tidal mixing, and advection. On the
southern flank, the cross-frontal secondary circulation was characterized by multiple circulation
cells, with a divergence at the edge of the front near the surface. On the northern flank, the model
predicted closed secondary circulation cells, with a convergence toward the front near the surface
and a divergence near the bottom on the slope. On the northeastern flank, the current tended to
diverge toward both sides of the maximum along-bank current jet near the surface and converge at
a depth of 75m near the bottom of the slope.

We have attempted in the past to use a 2-D primitive equation ocean circulation model to study
several basic processes occurring on GB associated with tidal forcing and stratification. In
particular, these processes include the formation of tidal mixing fronts, stratified tidal rectification,
and secondary circulation. This paper introduces a 3-D model with identical physics and more
realistic GB topography, in order to allow us to continue process-oriented modeling with processes
which inherently result in 3-D flows (e.g., surface heating and cooling, wind forcing, and upstream
forcing on the Scotian Shelf). While serious concerns have been raised by Stacey et al. (2000) about
the ability of the MY2.5 turbulence closure scheme to deal with internal mixing and the vertical
transport of turbulent kinetic energy away from the bottom boundary, we have and will continue
to use the MY2.5 scheme as the best of the presently available models for turbulent processes for
these kind of idealized process-oriented numerical studies. Our next study will focus on the effects
of the diurnal summer heat flux and mean summer winds on the tidal residual circulation over GB
presented here.
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