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A B S T R A C T

The performance of CMIP6 models in simulating freshwater content (FWC) in the Beaufort Gyre remains unclear. 
This study evaluated 17 CMIP6 models using both observational and reanalysis datasets. Additionally, a global 
ice-ocean coupled model based on Finite Volume Community Ocean Model (Global-FVCOM) was incorporated 
for reference. The results revealed a significant inter-model spread among the CMIP6 models in spatiotemporal 
variations of FWC, with discrepancies relative to the evaluation data that were larger than those exhibited in 
Global-FVCOM. These discrepancies were primarily attributed to simulation errors of the salinity structure 
within the CMIP6 models. Over half of the models indicated that the primary source of FWC error originated 
from the layers above the base of halocline, where most models underestimated FWC, while others suggested the 
error originated from the layers between the base of the halocline and the 34.8 psu isohaline, where models 
tended to overestimate FWC. Based on an overall evaluation using observational and reanalysis datasets, EC- 
Earth3, MRI-ESM2-0, and FIO-ESM-2-0 showed better performance relative to other CMIP6 models. However, 
these three models, along with the multi-model mean, exhibited larger errors than Global-FVCOM, suggesting 
that current CMIP6 models still face challenges in FWC simulation relative to some ice-ocean coupled models. 
The main aspects contributing to the errors, including discrepancies in uncertainties induced by internal vari-
ability, numerical configurations, vertical mixing schemes, model resolutions, freshwater inputs, and atmo-
spheric forcings were further discussed in this study. This study enhances understandings of CMIP6 models’ 
capabilities to simulate FWC in the Beaufort Gyre region, providing valuable insights for future model 
improvements.

1. Introduction

The freshwater system of the Arctic Ocean regulates both physical 
and biogeochemical processes, affecting the structure of ocean currents, 
sea ice formation and melting, as well as the stability of marine eco-
systems (White et al., 2007; Carmack et al., 2016). A key area within this 
system is the Beaufort Gyre, which functions as the largest reservoir, 
accounting for roughly 25 % of the Arctic’s total freshwater storage 
(Haine et al., 2015). Numerous observations have been conducted in this 
region, with the most prominent being the Beaufort Gyre Exploration 
Project (BGEP) launched in 2003. Freshwater accumulation in the 

Beaufort Gyre region began in the 1990s. From 2003 to 2007, the 
interannual variation of freshwater content (FWC) displayed a pro-
nounced positive trend, with approximately 1.7 m/year (Proshutinsky 
et al., 2009). The trend in liquid freshwater accumulation between 1992 
and 2012 was estimated at around 600 ± 300 km³/year, corresponding 
to a 30 % increase in storage (Rabe et al., 2014). The volume of liquid 
freshwater in the Beaufort Gyre region increased by >6400 km3 between 
2003 and 2018, representing a 40 % growth relative to the climatology 
of the 1970s (Proshutinsky et al., 2019). Lin et al. (2023) indicated that 
the FWC has plateaued from 2012 to 2019.

Although extensive observations have been conducted, including 
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Conductivity, Temperature, Depth (CTD) profiles, moorings, and buoys, 
the spatiotemporal continuity of observational data in the Beaufort Gyre 
region remains limited. This limitation restricts accurate estimations of 
the Arctic’s closed freshwater budget (Lique et al., 2016) and limits a 
clear understanding of freshwater variability. Thus, the comprehensive 
spatiotemporal series generated by numerical models can help mitigate 
this limitation and facilitate a deeper understanding of complex oceanic 
processes. Additionally, models assist in clarifying the major mecha-
nisms governing freshwater variability. Current studies have high-
lighted the importance of wind variability and eddy-induced processes 
in shaping interannual freshwater changes in the Beaufort Gyre. The 
FWC is regulated by a balance between Ekman pumping and mesoscale 
eddy fluxes, with eddies acting to counteract halocline deepening 
induced by wind-driven convergence (Manucharyan et al., 2016; Hochet 
et al., 2024). Furthermore, several studies suggested that accelerated sea 
ice melting (McPhee et al., 2009), variations in the freshwater flux 
(FWF) through the Bering Strait (Rabe et al., 2013), shifts in the Eurasian 
river inflow pathways (Morison et al., 2012), and increased North 
American river discharge (Macdonald et al., 1999) can also significantly 
contribute to freshwater accumulation.

With climate change, if the high-pressure system over the Beaufort 
Sea weakens in the future, the anticyclonic circulation and Ekman 
pumping are expected to be reduced, which will diminish the capacity to 
retain large volumes of freshwater, ultimately leading to a significant 
release of freshwater from the Beaufort Sea. The freshwater in the 
Beaufort Gyre region that flows into the North Atlantic may potentially 
reduce regional salinity, thereby altering the hydrography, increasing 
stratification, weakening the Atlantic Meridional Overturning Circula-
tion, and hindering the flow of warm Atlantic water to higher latitudes, 
thereby weakening the global thermohaline circulation (Dickson et al., 
1988; Zhang and Steele, 2007; Buckley and Marshall, 2016). Therefore, 
accurately predicting freshwater changes in the Beaufort Gyre region is 
critical for a deeper understanding of the Arctic freshwater response to 
climate change and its impact on the North Atlantic. Currently, projec-
tion studies primarily rely on climate models, with the latest CMIP6 
models playing a key role in exploring and predicting various climate 
scenarios. CMIP6 integrates a variety of models, but considerable 
inter-model spread in simulation capabilities remains among the 
different CMIP6 models. Several studies have been conducted to assess 
the freshwater simulation capabilities of CMIP6 models. Zanowski et al. 
(2021) analyzed 7 CMIP6 models across historical and future scenarios, 
revealing variations in freshwater storage and fluxes among the models, 
with a general consensus on the projection of increased liquid fresh-
water in the future. Wang et al. (2022) conducted a comparative study of 
liquid FWC, sea surface salinity, and the freshwater budget in the Arctic 
Ocean by analyzing differences between 31 CMIP6 models and 39 
CMIP5 models. However, these studies primarily focused on broad 
freshwater variations in the Arctic Ocean, and they largely emphasized 
the model ensemble mean, resulting in a less detailed analysis of the 
inter-model spread. As a result, the performance of CMIP6 models in 
simulating freshwater in the Beaufort Gyre region remains uncertain. 
Furthermore, as climate models encompass complex processes and in-
teractions among various spheres, how their performance in simulating 
freshwater compares to models that exclusively consider ice-ocean in-
teractions requires further exploration.

Therefore, in this study, we analyzed historical data from 17 CMIP6 
models, focusing on the Beaufort Gyre region. Model performance was 
evaluated based on FWC and salinity profiles, using a range of reference 
datasets, including observational and reanalysis data. Additionally, we 
explored the primary sources of error between the models and these 
reference datasets. Moreover, a global ice-ocean coupled model based 
on Finite Volume Community Ocean Model (Global-FVCOM) was 
included for comparison with the CMIP6 models. We also conducted a 
detailed analysis of the factors contributing to the differences between 
the CMIP6 models and the ice-ocean coupled model. This study en-
hances the understanding of climate models’ performance in simulating 

freshwater, provides new insights into freshwater characteristics, and 
contributes to the further improvement of climate models.

The rest of the paper is organized as follows. The models, observa-
tional data, reanalysis products, and methodologies used in our evalu-
ation of CMIP6 simulations are described in Section 2. Section 3 presents 
an analysis of CMIP6 model performance in simulating freshwater, 
focusing on FWC and salinity profile intercomparisons, along with a 
quantitative evaluation using various reference datasets. Section 4 dis-
cusses the key factors contributing to freshwater simulation errors. 
Finally, in Section 5, the conclusion about the major findings is 
summarized.

2. Data and methods

2.1. CMIP6 models

In this study, we utilized the historical salinity dataset provided by 
CMIP6. Taking into account the overlapping time period of observa-
tional data, reanalysis data, and CMIP6 historical simulations, the 
evaluation period was set from 2003 to 2014. Some previous studies on 
Arctic Ocean freshwater and salinity (Zanowski et al., 2021; Wang et al., 
2022; Langehaug et al., 2023) have shown that the internal variability 
among ensemble members within the same model is relatively small 
compared to the spread across different models. Based on these findings, 
we focused on the single ensemble member of r1i1p1f1 (r: realization, i: 
initialization, p: physics, f: forcing) variant from each model. We 
collected the available models and selected 17 models that can generally 
reproduce the fundamental patterns of freshwater distribution accord-
ing to our preliminary analysis. Detailed information about the selected 
CMIP6 models is provided in Table 1.

2.2. Global-FVCOM

In this study, we employed Global-FVCOM as a representative of ice- 
ocean coupled models for comparison with CMIP6 models. The ocean 
component is a prognostic, unstructured-grid, 3-D primitive equation, 
Finite Volume Community Ocean Model (FVCOM), operating within the 
spherical coordinate framework (Chen et al., 2003, 2006, 2007). The sea 
ice component is based on the Los Alamos Community Ice Code (CICE) 
model, which has been converted from its original structured-grid form 
into an unstructured-grid finite volume version (UG-CICE) and subse-
quently coupled with FVCOM. In this model, the grid covers the global 
ocean, with horizontal resolution ranging from approximately 1 km in 
coastal areas to 50 km in the interior regions, and 40 km in the Arctic. A 
hybrid terrain-following coordinate system with 45 vertical layers was 
utilized. In regions with water depth exceeds 225 m, the s-coordinate 
system was employed, featuring 10 uniform layers near the surface and 
3 near the bottom, each with a thickness of 5 m. In shallow continental 
and coastal regions with depth <225 m, the σ-coordinate system was 
applied, maintaining the same total number of vertical layers. A tran-
sition between the two coordinate systems occurs at the 225-m isobath, 
where all layers have a uniform thickness of 5 m. The related informa-
tion about this model is shown in Table 1.

We used data from Global-FVCOM simulations covering the period 
from 2003 to 2014, under conditions without data assimilation. The 
Global-FVCOM simulation has been running since 1978, utilizing at-
mospheric forcings including surface wind stress, net heat flux, short-
wave irradiance, air pressure gradients, precipitation minus evaporation 
from the CORE-v2 dataset for the years 1978–2009, since CORE-v2 is 
only available up to 2009. For subsequent years, NCEP/NCAR reanalysis 
datasets were used (Zhang et al., 2016a, 2016b). Since CORE-v2 is 
generated from the NCEP/NCAR reanalysis data and both datasets share 
the same spatial resolution, any potential discontinuities between the 
two datasets are considered minimal. Global-FVCOM includes 766 rivers 
from various sources. Given the focus on Arctic freshwater variation, 
data for major rivers in the Arctic region were derived from daily or 
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monthly real-time observations collected by the Arctic Great Rivers 
Observatory Project, the United States Geological Survey, and the 
Canada Water Agency. When real-time discharge records were unavai-
lable, the climatological monthly mean data from the Global Navy 
Coastal Ocean Model (GNCOM) were employed (Barron and Smedstad, 
2002). Additionally, astronomical tidal forcing was incorporated, ac-
counting for eight constituents: M2, S2, N2, K2, K1, P1, O1, and Q1. The 
model was initialized with a 50-year spin-up field output, which was 
generated under climatologic meteorological forcing, river discharge, 
and astronomical tidal conditions (Gao et al., 2011; Chen et al., 2016). 
The Global-FVCOM has been extensively validated in the Arctic Ocean, 
including tidal elevation (Chen et al., 2009), current circulation (Chen 
et al., 2016; Zhang et al., 2016a; Deng et al., 2019, 2021), sea ice (Gao 
et al., 2011; Zhang et al., 2016b; Shen et al., 2021), and surface waves 
(Zhang et al., 2020).

2.3. Observational data

In this study, observational data from CTD and Ice-Tethered Profiler 

(ITP) measurements were employed to evaluate the CMIP6 models’ 
performance. CTD, collected from the Beaufort Gyre Exploration Project 
conducted by the Woods Hole Oceanographic Institution, were derived 
from ship-based observations collected between July and October. This 
study specifically focused on the period from 2003 to 2014. ITP, 
deployed on sea ice, gathered temperature and salinity (T/S) profile data 
from beneath the ice and were supplied by the Ice-Tethered Profiler 
Program at the Woods Hole Oceanographic Institution. Level 3 data was 
utilized in this study. The data collection commenced in 2004, and the 
dataset used in this study spans from 2004 to 2014. The spatial distri-
bution of the CTD and ITP data is shown in Fig. 1.

2.4. Reanalysis data

Due to the spatiotemporal limitations of the observational data, we 
additionally incorporated two reanalysis datasets to support the 
assessment.

Table 1 
Information of the 17 CMIP6 models and Global-FVCOM used in this study. We adopt a nomenclature for vertical mixing schemes that is similar to that described by 
Heuzé et al. (2023): KPP = K-profile parameterization scheme (Large et al., 1994); TKE = Turbulent kinetic energy scheme (Gaspar et al., 1990); TC = turbulence 
closure scheme (Canuto et al., 2002, 2001); PP = Pacanowski et al. (1981); DL = Decloedt and Luther (2010); MY-2.5 = Mellor and Yamada (1982) level 2.5 turbulent 
closure model.

Model Number of grid points Number of levels Vertical mixing Ocean model Sea ice model

ACCESS-CM2 360 × 300 50 KPP ACCESS-OM2 CICE5.1.2
ACCESS-ESM1-5 360 × 300 50 KPP ACCESS-OM2 CICE4.1
BCC-CSM2-MR 360 × 232 40 KPP MOM4 SIS
CanESM5 361 × 290 45 TKE NEMO3.4.1 LIM2
CESM2 320 × 384 60 KPP POP2 CICE5
CMCC-ESM2 362 × 292 50 TKE NEMO3.6 CICE4
EC-Earth3 362 × 292 75 TKE NEMO3.6 LIM3
FGOALS-f3-L 360 × 218 30 TC LICOM3.0 CICE4
FGOALS-g3 360 × 218 30 TC LICOM3.0 CICE4
FIO-ESM-2-0 320 × 384 60 KPP POP2-W CICE4
HadGEM3-GC31-LL 360 × 330 75 TKE NEMO-HadGEM3-GO6.0 CICE5.1
IPSL-CM6A-LR 362 × 332 75 TKE NEMO-OPA LIM3.6
MCM-UA-1-0 192 × 80 18 PP MOM1.0 Thermodynamic ice model
MPI-ESM1-2-HR 802 × 404 40 PP MPIOM1.63 Integrated within MPIOM and ECHAM
MRI-ESM2-0 360 × 364 61 DL MRI.COM4.4 MRI.COM4.4
NESM3 384 × 362 46 TKE NEMO v3.4 CICE4.1
UKESM1-0-LL 360 × 330 75 TKE NEMO-HadGEM3-GO6.0 CICE5.1.2
Global-FVCOM 351,153 unstructured grid 45 MY-2.5 FVCOM3.1 CICE4

Fig. 1. Illustration of the main study area (black dashed line) and the distribution of observational data (CTD: red dots; ITP: blue dots). The red line indicates the 
section used to calculate the freshwater flux in the Bering Strait.

Y. Zhang et al.                                                                                                                                                                                                                                   Ocean Modelling 197 (2025) 102565 

3 



2.4.1. ORAS5
Ocean Reanalysis System version 5 (ORAS5) is utilized as an evalu-

ation dataset to assess the performance of the CMIP6 models, with 
salinity data from 2003 to 2014 being employed for this analysis. ORAS5 
is a global ocean reanalysis system developed and operated by the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF). The 
system assimilates data from sea surface temperature, sea ice concen-
tration, sea level anomaly, and in situ T/S profiles (Zuo et al., 2019). The 
horizontal resolution is 0.25◦, and the vertical structure is divided into 
75 layers, with vertical spacing increasing from 1 m at the surface to 200 
m in the deep sea. ORAS5 comprises a total of five ensemble members, 
including one control member without perturbations and four members 
with perturbations in initial conditions, assimilated observations, and 
surface forcing fields. This study analyzed them by computing their 
ensemble mean.

2.4.2. TOPAZ4
Similarly, salinity data from Towards an Operational Prediction 

System for the North Atlantic European Coastal Zones 4 (TOPAZ4) were 
also used as an additional validation dataset (Sakov et al., 2012). 
TOPAZ4 is an ocean forecasting and reanalysis system used by the Arctic 
Marine Forecasting Centre (ARC-MFC), which assimilates data from sea 
surface temperature, sea level anomaly, sea ice concentration, sea ice 
thickness, sea surface salinity, and in situ T/S profiles. It bases on the 
Hybrid Coordinate Ocean Model (HYCOM). The resulting Arctic rean-
alysis product features a horizontal grid resolution of 12–16 km and 
consists of 50 hybrid vertical layers.

2.5. Methods of freshwater content calculation and assessment

FWC was computed using established methodologies from most 
previous literature including Aagaard and Carmack (1989) and Serreze 
et al. (2006). As shown in Eq. (1)

FWC =

∫ h

z=0

Sref − S
Sref

dz (1) 

where S is the salinity of the seawater at depth z, and Sref indicates the 
reference salinity, which is defined as 34.8 psu, a typical salinity for 
Atlantic Water, to maintain consistency with previous studies. h repre-
sents the depth of seawater with a salinity of 34.8 psu.

In this study, we calculated the FWC in the Beaufort Gyre region, 
integrating both reanalysis and observational data for a comparative 
assessment. The location of the Beaufort Gyre region is defined ac-
cording to Polyakov et al. (2018), as shown in Fig. 1. Given the differ-
ences in spatial resolution between the models (CMIP6 and 
Global-FVCOM) and the reference datasets, we applied inverse dis-
tance weighting (IDW) interpolation to project the model data onto the 
exact grid points of the observational and reanalysis datasets. This en-
sures consistency in the evaluation and enables a direct point-to-point 
comparison. Additionally, the multi-model mean (MMM), computed as 
the mean of the 17 selected CMIP6 models, was used as a reference 
benchmark. Although the MMM does not fully disentangle model biases 
from internal variability, it provides a representative baseline for eval-
uating systematic errors across models. In Section 3, the MMM was 
evaluated alongside the individual CMIP6 models.

2.6. Halocline base depth estimation

Salinity profiles and halocline structures are crucial aspects for 
evaluating the models’ capability in simulating freshwater. The base of 
the halocline was determined by the ratio of the density gradient caused 
by temperature and salinity, a method initially proposed by Bourgain 
and Gascard (2011) and subsequently used in several studies (Polyakov 
et al., 2018; Metzner and Salzmann, 2023). The ratio R is defined as 
follows: 

R =
α ∂θ

∂z

β ∂S
∂z

(2) 

where θ and Srepresent potential temperature and practical salinity, 
respectively.α represents the thermal expansion coefficient and β de-
notes the haline contraction coefficient. These coefficients were calcu-
lated using the GSW Oceanographic Toolbox of TEOS-10 (Feistel et al., 
2010).

As a general guideline, searching downward to a depth where the 
value of R exceeds 0.05 indicates the base of the halocline. The halocline 
in the Canada Basin exhibits complex vertical structure (Shimada et al., 
2005), with some profiles affected by noise potentially leading to mul-
tiple occurrences of R values exceeding 0.05 above the base depth of the 
halocline. To address the issue of potentially shallow halocline base 
depths in such situations, this study identified the depth at which R first 
exceeds 0.05, searching from 300 m upwards, as the base depth of the 
halocline.

2.7. Primary source of FWC error

To analyze the primary source of FWC error, we divided the water 
column above the isohaline of 34.8 psu into two layers based on the base 
depth of the halocline. These two layers are referred to as the upper layer 
and the lower layer. The upper layer is defined as the depth between 
surface and base depth of the halocline, while the lower layer is defined 
as the depth between base depth of the halocline and the isohaline of 
34.8 psu. We defined the primary source of FWC error as the layer that 
contributes most to the total error. This is determined by whether the 
overestimation or underestimation of FWC in a given layer aligns with 
the total FWC error. If both layers exhibit consistent overestimation or 
underestimation with the total FWC error, the layer contributing more is 
identified as the primary source.

We analyzed the primary source of FWC error across 144 months 
from 2003 to 2014, calculating the percentage of months in which the 
upper and lower layers were the dominant error source. The layer with 
the higher percentage was considered the primary source.

2.8. Evaluation metrics

In this study, we used the correlation coefficient (CC), bias, and root 
mean square error (RMSE) as statistical metrics. The equation for bias is 
defined as follows: 

bias =
1
n
∑n

i=1
(mi − ri) (3) 

where i indicates the i th grid point, and n represents the total number of 
grid points in the study area. m and r denotes model and reference data, 
respectively. These three statistical metrics are employed to quantita-
tively evaluate the models’ accuracy from various perspectives (Hu 
et al., 2019).

Additionally, Distance between Indices of Simulation and Observa-
tion (DISO) was introduced as a comprehensive index to assess the 
simulation performance of the models. DISO integrates various perfor-
mance metrics (Nie et al., 2023; Chen et al., 2024; Zhang et al., 2024), 
and it is based on the Euclidean Distance, providing a flexible approach 
to determining statistical metrics and their quantities (Hu et al., 2022). 
Here, we employed CC, bias, and RMSE to calculate DISO. The equation 
for DISO is defined as follows: 

DISOi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(NCCi − 1)2
+ NBias2

i + NRMSE2
i

√

(4) 

where i=0, 1, …, m, with i=0 corresponding to the validation data and 
i=m indicating the total number of models. The abbreviations NCC, 
NBias, and NRMSE refer to the normalized forms of CC, bias, and RMSE, 
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respectively. These metrics are normalized to a range between 0 and 1, 
according to the following normalization formula: 

NSi =
Si − min(S)

max(S) − min(S)
(5) 

where S denotes metrics such as CC. A lower DISO value indicates su-
perior performance.

3. Result

In this section, we first intercompared the spatiotemporal variations 
in FWC among the CMIP6 models, including comparisons with an ice- 
ocean coupled model and reanalysis data. Similarly, further analysis 
focused on salinity profiles and their contributions to FWC errors. 
Finally, a quantitative evaluation of FWC was performed to evaluate the 
models in comparison with both reanalysis and observational data.

3.1. Freshwater content intercomparisons

Generally, there was significant inter-model spread among the 17 
CMIP6 models in both the temporal evolution and spatial distribution of 
FWC, with spatiotemporal mean FWC ranging from 10 to 48 m (Fig. 2a). 
The mean FWC of MMM exceeded the spatiotemporal mean FWC of the 
two reanalysis datasets (ORAS5 and TOPAZ4) by 0.54 m and 1.51 m, 
respectively. Among these models, 9 surpassed the FWC values of 
ORAS5, and 11 exceeded those of TOPAZ4. As a reference, the ice-ocean 
coupled model Global-FVCOM underestimated FWC, exhibiting differ-
ences of − 1.42 m and − 0.44 m relative to ORAS5 and TOPAZ4. 

Regarding the FWC of MMM, it was closer to ORAS5, while Global- 
FVCOM showed greater alignment with TOPAZ4.

Further analysis was conducted to explore the primary spatiotem-
poral sources contributing to the differences in FWC among the CMIP6 
models. For each model, the FWC bias relative to ORAS5 and TOPAZ4 
exhibited little variation across months or years, indicating that the 
performance of CMIP6 models remained relatively stable over different 
timescales (Fig. 2b and Fig. 2c). The biases of 17 CMIP6 models relative 
to the two reanalysis datasets ranged from − 9.13 m to 27.93 m and 
− 8.16 m to 28.91 m, respectively. In terms of monthly variation, most 
CMIP6 models exhibited similar patterns to ORAS5 and TOPAZ4. Both 
ORAS5 and TOPAZ4 showed that the minimum FWC occurred in 
April–May, while their estimates of the maximum FWC differed, with 
ORAS5 showing it in September–October and TOPAZ4 in October–No-
vember. 9 CMIP6 models, along with Global-FVCOM, exhibited the 
pattern consistent with ORAS5, while none of the models successfully 
reproduced the FWC cycle of TOPAZ4. Regarding interannual variation, 
ORAS5 showed that FWC reached its maximum in 2008 and its mini-
mum in 2004, while TOPAZ4 indicated that the maximum and minimum 
FWC occurred in 2009 and 2004, respectively. However, none of the 
CMIP6 models fully captured this pattern. As a reference, Global- 
FVCOM exhibited the characteristic consistent with ORAS5. The com-
parison results revealed that inter-model spreads in spatiotemporal 
mean FWC were not primarily attributed to a specific time period, but 
rather manifested as consistent patterns maintained by individual 
models throughout the study period. This persistence reflects a sys-
tematic bias inherent to the models, with MCM-UA-1-0 producing the 
largest FWC estimates and FGOALS-g3 having the smallest.

In terms of spatial distribution, the two reanalysis datasets indicated 

Fig. 2. Comparisons of (a) spatiotemporal mean, (b) monthly variation, and (c) yearly variation of FWC among 17 individual CMIP6 models, the MMM, the ice-ocean 
coupled model and two reanalysis data from 2003 to 2014.
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that regions with higher FWC were located in the southwestern part of 
the study area, with maximum values ranging from 21 to 23 m (Fig. 3). 
The simulation error in FWC from 17 CMIP6 models were primary 
attributed to differences in the spatial distribution characteristics, as 
most models exhibited higher FWC in the northwestern regions. Can-
ESM5, MCM-UA-1-0, and NESM3 displayed significantly overestimated 
FWC values, exceeding 30 m across much of the area. In contrast, 
FGOALS-g3 exhibited the lowest values across the entire region, 
remaining below 14 m. The MMM retained the characteristics of most 
CMIP6 models, including a high FWC region in the northwest, where the 
high values were comparable to those in ORAS5. Unlike the CMIP6 
models, Global-FVCOM showed a FWC distribution similar to the 
reanalysis data, with high values of 20 m located in the southwest.

3.2. Salinity profile intercomparisons

The disparities in FWC among the 17 CMIP6 models are attributed to 
differences in the vertical salinity structure. Both two reanalysis datasets 
(ORAS5 and TOPAZ4) primarily indicated pronounced vertical salinity 
gradients within the 0–500 m depth range, exhibiting relatively strong 
stratification and thin mixed layer in the near surface layer (Fig. 4). The 
isohaline of 34 psu was approximately located at a depth of 210 m. Most 
CMIP6 models also displayed noticeable vertical salinity gradients, but 
the stratification of most models was generally weaker than that 
observed in the reanalysis data, except for IPSL-CM6A-LR, and 15 of the 
CMIP6 models exhibited a deeper isohaline at the 34 psu depth 
compared to the reanalysis data. The salinity profile characteristics of 
the MMM were similar to those of the majority of CMIP6 models. Global- 
FVCOM also exhibited notable vertical gradients at the surface layer. 
Compared to most CMIP6 models, its salinity gradients and the depth of 
the isohaline of 34 psu were more comparable to those of the two 
reanalysis datasets.

A quantitative comparison of salinity profile errors between the 
CMIP6 models and the Global-FVCOM, relative to the two reanalysis 
datasets, was further presented (Figs. 5 and 6). In the comparison with 
ORAS5, all models except IPSL-CM6A-LR overestimated surface layer 
salinity (Fig. 5a). Above 400 m, significant variations in salinity dis-
crepancies between the models and reanalysis data were observed with 
increasing depth. Above 50 m, most models exhibited an overestimation 
of salinity. From 50 to 600 m in depth, underestimations were domi-
nated, indicating a shift from positive to negative salinity discrepancies. 
Below 600 m, the discrepancies gradually stabilized, with errors 
remaining within the range of − 0.5 to 0.5, and the MMM exhibited a 
slight underestimation, with errors less than − 0.06. Global-FVCOM also 
exhibited an error shift from positive to negative with depth. Compared 
to the CMIP6 models, the differences between Global-FVCOM and 
ORAS5 began to stabilize at a shallower depth of approximately 550 m, 
with the errors less than − 0.05.

Vertical depth of notable salinity variation were primarily located 
above and within the halocline, which are key regions influencing FWC 
changes. In this study, the FWC errors from the upper layer above the 
base depth of the halocline and the lower layer between the base depth 
of the halocline and the isohaline at the 34.8 psu depth are assessed for 
each model relative to the reanalysis data, and the primary sources of 
FWC error are identified.

The total error in the water column above the isohaline of 34.8 psu 
varied across months, with 4 CMIP6 models consistently overestimating 
and another 4 models persistently underestimating (Fig. 5b). In the 
upper layer, 14 CMIP6 models and Global-FVCOM underestimated FWC, 
with the maximum underestimation reaching approximately − 11 m 
(Fig. 5c). In the lower layer, CMIP6 models, Global-FVCOM, and the 
MMM generally overestimated FWC, with the maximum overestimation 
reaching up to 20 m (Fig. 5d). Regarding the primary sources of FWC 
error, 11 CMIP6 models and FVCOM indicated that the primary source 
of error originated from the upper layer, while 6 CMIP6 models and the 
MMM showed that the lower layer dominated (Fig. 5e). Among the 

models where the upper layer was the dominant source, 10 CMIP6 
models and Global-FVCOM underestimated FWC, whereas in those 
models where the lower layer was dominant, all the models and the 
MMM overestimated FWC. This suggested that FWC overestimation was 
primarily driven by the lower layer, whereas underestimation was pre-
dominantly influenced by the upper layer.

In comparison with TOPAZ4, the magnitude of salinity difference 
transitioned from positive to negative more sharply across the models 
(Fig. 6a). All models except IPSL-CM6A-LR overestimated near surface 
salinity, this overestimation was mainly concentrated within the upper 
20 m. Within the depth range of 20 to 450 m, most models exhibited 
underestimation. At depths below 450 m, the differences gradually 
stabilized, with errors confined within the range of − 0.43 to 0.47. The 
MMM displayed error characteristics similar to those of the 17 CMIP6 
models, with underestimation stabilizing at approximately − 0.12 
starting from around 450 m. Global-FVCOM performed notably well, 
exhibiting a more pronounced change in error from positive to negative 
with depth, and the discrepancy with TOPAZ4 began to stabilize around 
300 m, with errors gradually approaching zero.

The primary sources of error relative to TOPAZ4 were further 
analyzed. The temporal variation of FWC errors in the total water col-
umn above the isohaline of 34.8 psu, as well as in the upper layer and 
lower layer, was similar to that of ORAS5 (Fig. 6b–d). In a similar 
manner, 9 CMIP6 models and Global-FVCOM identified the upper layer 
as the primary source of error, whereas 8 CMIP6 models and the MMM 
indicated that the lower layer was dominant. The comparison with 
TOPAZ4 also indicated that the overestimation of FWC was primarily 
attributed to the lower layer, while the underestimation was chiefly 
influenced by the upper layer (Fig. 6e).

3.3. Quantitative evaluation

The above section primarily highlighted the similarities and inter- 
model spread among CMIP6 models through intercomparison, as well 
as their discrepancies with the ice-ocean coupled model. A quantitative 
analysis was conducted to further evaluate the performance ranking of 
these 17 CMIP6 models, with a focus on listing the top three models that 
demonstrated superior performance.

The evaluation of the 17 CMIP6 models’ and Global-FVCOM’s per-
formance against observations using CTD data is shown in Fig. 7. Sig-
nificant performance variability was observed among the 17 CMIP6 
models, with CC ranging from a minimum of − 0.15 to a maximum of 
0.61, RMSE varying from 3.39 m to 31.54 m, and bias spanning from 
− 9.91 m to 30.24 m. The models performed differently across various 
metrics: NESM3, CanESM5, and FIO-ESM-2-0 achieved relatively high 
CC, CESM2, EC-Earth3 and MRI-ESM2-0 demonstrated smaller RMSE, 
and CESM2, FGOALS-f3-L and ACCESS-ESM1-5 exhibited comparatively 
small bias. Bias analysis indicated that 10 CMIP6 models tended to un-
derestimate FWC. The MMM displayed a lower CC but exhibited rela-
tively small RMSE and bias. Global-FVCOM outperformed all CMIP6 
models in terms of both CC and RMSE, with only 4 models and the MMM 
exhibiting a bias superior to that of Global-FVCOM. When assessing the 
17 CMIP6 models using ITP data, the models demonstrated considerable 
variability in metric values (Fig. 8). Most models did not achieve higher 
CC values with ITP data compared to those with CTD data. More than 
half of the models displayed reduced RMSE, and the majority showed 
smaller bias. Similar to the evaluation with CTD data, NESM3 and FIO- 
ESM-2-0 maintained relatively high CC, CESM2, EC-Earth3, and MRI- 
ESM2-0 continued to exhibit small RMSE, and CESM2 and ACCESS- 
ESM1-5 retained small bias. Furthermore, EC-Earth3 achieved both a 
higher CC and smaller bias. The MMM showed a low CC but relatively 
small RMSE and bias. Global-FVCOM exhibited superior performance 
compared to all CMIP6 models in both CC and RMSE, with only the 
MMM showing a smaller bias than Global-FVCOM.

In addition to the observational data, reanalysis data was utilized to 
further assess their performance. When evaluated against ORAS5, the 17 
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Fig. 3. Spatial distribution of the multi-year mean FWC in the Beaufort Gyre over the period 2003–2014 among two reanalysis datasets, 17 individual CMIP6 models, 
the MMM and the ice-ocean coupled model.
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Fig. 4. Salinity contour diagrams (depth vs. time) at various depths for two reanalysis datasets, 17 individual CMIP6 models, the MMM and the ice-ocean 
coupled model.
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Fig. 5. (a) The average salinity profiles of the Beaufort Gyre region from 2003 to 2014 among ORAS5, 17 individual CMIP6 models, the MMM and the ice-ocean 
coupled model. The thick black dashed line represents the salinity of ORAS5. The other lines indicate the salinity error for each model defined as the model salinity 
minus the ORAS5 salinity. (b–d) Errors in FWC for CMIP6 models and Global-FVCOM relative to ORAS5 in the total water column above the isohaline of 34.8 psu, 
upper layer and lower layer, respectively. (e) Percentage of months where the upper layer (orange) and lower layer (blue) were the primary source of error, 
respectively.
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CMIP6 models exhibited CC ranging from 0.19 to 0.71, with 4 models 
showing RMSE and 3 models displaying bias exceeding 10 m (Fig. 9). 
EC-Earth3, CESM2, and MRI-ESM2-0consistently displayed smaller 
RMSE. EC-Earth3, MRI-ESM2-0, and NESM3 demonstrated relatively 
high CC, while CESM2, FGOALS-f3-L, and EC-Earth3 exhibited smaller 
bias. The MMM exhibited lower CC than most CMIP6 models but showed 
smaller RMSE and bias. Compared to Global-FVCOM, all 17 models had 
lower CC, with only EC-Earth3 showing RMSE and bias, along with the 
MMM’s bias, smaller than Global-FVCOM.

When evaluating against TOPAZ4, the models exhibited some dif-
ferences in performance compared to ORAS5, with most models 
showing lower CC, while the 3 models with higher CC remained 
consistent with the results observed in the ORAS5 evaluation (Fig. 10). 

EC-Earth3, MRI-ESM2-0, and FIO-ESM-2-0 exhibited smaller RMSE, 
while MRI-ESM2-0, ACCESS-ESM1-5, and EC-Earth3 demonstrated 
smaller bias. Additionally, FIO-ESM-2-0 showed a relatively small 
RMSE, while MRI-ESM2-0 and ACCESS-ESM1-5 exhibited smaller bias. 
The MMM still demonstrated low CC but achieved relatively small RMSE 
and bias. Relative to Global-FVCOM, all 17 models had lower CC and 
larger RMSE, with only 4 CMIP6 models showing smaller bias.

Given the significant differences in CC, RMSE, and bias among the 
models, this study employed DISO for a comprehensive performance 
evaluation across different reference datasets. Among the CMIP6 
models, EC-Earth3 and MRI-ESM2-0 consistently ranked within the top 
three across evaluations using various reference datasets (Fig. 11). In the 
overall performance assessment, EC-Earth3 ranked highest, followed by 

Fig. 6. Same as Fig. 5 except with TOPAZ4 instead of ORAS5.
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MRI-ESM2-0 and FIO-ESM-2-0. However, their DISO scores remained 
higher across all evaluations when compared with Global-FVCOM, 
indicating that Global-FVCOM exhibited relatively smaller errors than 
the CMIP6 models. These findings suggested that the CMIP6 models’ 
ability to simulate freshwater in the Beaufort Gyre remained limited and 
required further improvement.

4. Discussion

The evaluation above revealed that the current CMIP6 models 
exhibited considerable errors when compared to the ice-ocean coupled 
model, Global-FVCOM, which served as a reference. We further dis-
cussed the major factors contributing to these errors. Generally, the 
freshwater simulation errors arise from multiple interdependent factors, 

including inherent uncertainties induced by internal variability among 
ensemble members within the same model, structural differences in 
numerical configurations, divergent parameterization of vertical mixing 
schemes, varying model resolutions, inconsistencies in freshwater in-
puts, and differences in internally simulated atmospheric conditions.

Although some previous studies (Zanowski et al., 2021; Wang et al., 
2022; Langehaug et al., 2023) have validated the effectiveness of using a 
single ensemble member to characterize model performance, the 
quantitative impact of uncertainty induced by internal variability across 
ensemble members on model evaluation remains a critical focus. To 
address this, we systematically selected multiple ensemble members 
from the models employed in this study. Notably, eight models include 
<6 ensemble members, while the remaining nine models provide >10 
ensemble members. To ensure analytical consistency and mitigate 

Fig. 7. Evaluation of FWC on CTD observations among the CMIP6 models, the MMM, and the ice-ocean coupled model. The black line indicates the optimal fit, while 
the red line represents the fit between the FWC of the models and CTD.
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potential biases arising from differences between small- ensemble and 
large-ensemble simulations, we set a uniform threshold of 10 ensemble 
members per model. For models with >10 members, we selected first 10 
representative realizations, while models with <10 members were 
excluded from the analysis (Table 2). The comparative analysis dem-
onstrates that although internal variability among ensemble members 
introduces some differences in FWC simulations, the variations among 
ensemble members within the same model are indeed much smaller than 
the spreads across different models (Fig. 12). For all models, the 
ensemble mean statistically remains very similar to single ensemble 
member. This indicates that discrepancies between models and obser-
vations predominantly arise from systematic errors inherent in each 
model, rather than internal variability. Consequently, a single repre-
sentative ensemble member suffices to capture a model’s general 

performance in the Arctic freshwater simulation.
Additionally, the choice of ocean model plays a critical role in 

simulating Arctic FWC, and systematic errors within the numerical 
configuration can substantially influence simulation outcomes. Pan 
et al. (2023) highlighted that climate models employing the same ocean 
model family often exhibit common biases, and inherent limitations in 
ocean model frameworks can significantly affect the MMM results. 
Among the 17 CMIP6 models, the primary ocean model families repre-
sented were NEMO, POP, MOM, and LICOM (Table 1). In this study, the 
comparative results indeed revealed some commonalities. For instance, 
the LICOM and MOM ocean model family consistently underestimated 
and overestimated FWC, respectively. Both the ACCESS-OM2 family and 
4 models within the NEMO family (CMCC-ESM2, EC-Earth, HadG-
EM3-GC31-LL, IPSL-CM6A-LR) showed a region of high FWC in the 

Fig. 8. Evaluation of FWC on ITP observations among the CMIP6 models, the MMM, and the ice-ocean coupled model. The black line indicates the optimal fit, while 
the red line represents the fit between the FWC of the models and ITP.
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northwest. In addition, the LICOM and ACCESS-OM2 ocean model 
families identified the upper layer as the primary source of error, 
whereas the MOM family attributed the dominant errors to the lower 
layer.

The selection of vertical mixing schemes is essential for the accuracy 
of freshwater simulation. In this study, the 17 CMIP6 models incorporate 
various mixing schemes such as KPP, TKE, TC, PP, and DL, whereas 
Global-FVCOM employs the MY-2.5 mixing scheme (Table 1). These 
vertical mixing schemes lead to variations in both the mixed layer and 
the halocline among different models, thereby influencing the overall 
structure of the salinity profile and, consequently, the simulation of 
FWC.

Model resolution is also a critical factor that can potentially affect the 

accuracy of its simulation results. Coarse horizontal resolution may fail 
to accurately simulate intricate oceanic processes and capture meso‑ and 
sub-mesoscale features. For instance, among the 17 CMIP6 models, 
MCM-UA-1-0, FGOALS-f3-L, FGOALS-g3, and BCC-CSM2-MR, which 
had relatively low horizontal resolution (Fig. 13), showed the largest 
errors in the overall assessment (Fig. 11). The horizontal resolution of 
other CMIP6 models is relatively low compared to Global-FVCOM, and 
they also exhibited greater errors in freshwater simulation. In terms of 
vertical resolution, the 4 CMIP6 models with the weakest performance 
also feature the lowest vertical resolution. Moreover, the top three 
CMIP6 models in overall performance, EC-Earth3, MRI-ESM2-0, and 
FIO-ESM-2-0, had higher vertical resolution compared to other models 
with similar horizontal resolution, highlighting the critical importance 

Fig. 9. Evaluation of FWC on ORAS5 among the CMIP6 models, the MMM, and the ice-ocean coupled model. The black line indicates the optimal fit, while the blue 
line represents the fit between the FWC of the models and ORAS5.
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of vertical resolution.
Furthermore, differences in freshwater input can significantly affect 

the simulation of freshwater in the Beaufort Gyre. Freshwater input 
consists of solid and liquid freshwater, with sea ice representing the 
source of solid freshwater. The formation and melting of sea ice can alter 
the salinity of the surface layer. Sea ice represents a crucial source of 
freshwater. The sea ice models in the 17 CMIP6 models primarily utilize 
CICE, SIS, and LIM, with CICE being the most widely adopted (Table 1). 
The specific versions of CICE employed by these models also vary. Dif-
ferences in sea ice formation and melting processes exist across various 
sea ice models (Long et al., 2021) and even among different versions of 
the same model. The studies by Shu et al. (2020), Watts et al. (2021), 
Chen et al. (2023), and Wang et al. (2023) all indicated that, although 

CMIP6 models exhibit similarities in simulating historical sea ice vari-
ations, significant inter-model spread persists. It is suggested that this 
spread leads to differences in the contribution of sea ice as a freshwater 
input in the Beaufort Gyre region. For Global-FVCOM, some studies have 
been conducted to validate sea ice, demonstrating good performance in 
the climatological means and real-time series of sea ice concentration, 
extent, thickness, and velocity (Gao et al., 2011; Zhang et al., 2016b; 
Shen et al., 2021). Therefore, this accuracy in sea ice simulation facili-
tates a more precise estimation of the freshwater contribution from sea 
ice.

The freshwater inflow through Bering Strait is another important 
source of freshwater input. We calculated the FWF through the Bering 
Strait in each model and compared it with the observational FWF from 

Fig. 10. Evaluation of FWC on TOPAZ4 among the CMIP6 models, the MMM, and the ice-ocean coupled model. The black line indicates the optimal fit, while the 
blue line represents the fit between the FWC of the models and TOPAZ4.
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mooring site A3 released by Woodgate (2018) (Fig. 14). The FWF from 
the CMIP6 models exhibited larger errors compared to that of 
Global-FVCOM. The CMIP6 models exhibited RMSE values ranging from 
31.54 mSv to 127.55 mSv, which is larger than the 21.96 mSv estimated 
in Global-FVCOM. Additionally, the CC for FWF variability in the CMIP6 
models ranged from − 0.07 to 0.38, which are notably lower than the 
0.80 calculated in Global-FVCOM. It is important to note that this 
analysis is based on a single ensemble member for each model. The in-
ternal variability across different ensemble members plays a crucial role 
in the estimation and comparison of FWF, potentially contributing to the 
discrepancies observed among CMIP6 models. A more comprehensive 
assessment that incorporates multiple ensemble members would pro-
vide deeper insights into the uncertainties associated with FWF simu-
lations and should be considered in future studies.

In addition, river runoff also represents a critical source of liquid 
freshwater. In CMIP6 models, river runoff is primarily simulated within 
the models. However, the complexities of ocean-land-atmosphere 

interactions can lead to inaccuracies in the estimation of river runoff 
into the Arctic region. A similar issue applies to net evaporation and 
precipitation, which also contribute to liquid freshwater input. In 
contrast, the ice-ocean coupled model incorporates river runoff, evap-
oration, and precipitation as external forcings, primarily sourced from 
observational and reanalysis data, which generally leads to more accu-
rate freshwater input estimates.

Moreover, Ekman pumping, driven by both air-ocean stress and ice- 
ocean stress, is recognized as a key factor influencing FWC. To isolate 
the impact of wind field differences in CMIP6 models and avoid po-
tential effects from sea ice and ocean surface currents, we chose to focus 
solely on the component of Ekman pumping induced by wind stress. In 
CMIP6 models, wind stress is computed internally, whereas the ice- 
ocean coupled model obtains this input from reanalysis data. 
Excluding the effects of sea ice and surface currents, a comparative study 
was conducted to evaluate only the wind-induced Ekman pumping ve-
locity estimated by CMIP6 and Global-FVCOM models, with the Ekman 
pumping velocity derived from ERA5 (ECMWF Reanalysis v5) wind 
data. The Ekman pumping velocity associated with wind stress is 
computed as follows: 

Wekman =
1
ρf

(
∂τy

∂x
−

∂τx

∂y

)

(6) 

where Wekman indicates Ekman pumping velocity, f represents the Co-
riolis parameter, and ρ is the seawater density. τx and τy are the zonal 
and meridional components of the wind stress, respectively.

The results revealed that, compared to the Ekman pumping velocity 
estimated by Global-FVCOM, the estimates from CMIP6 models 
exhibited substantial differences from those derived from ERA5 
(Fig. 15). The mean Ekman pumping velocity from ERA5 between 2003 
and 2014 was − 0.59 cm/day, indicating prevalent downwelling. Global- 
FVCOM produced a similar downwelling pattern, with a mean velocity 
of − 0.51 cm/day. However, among the 17 CMIP6 models, 10 exhibited 
prevalent upwelling, contradicting the ERA5 results. The remaining 7 
models simulated downwelling, but their biases were larger than that of 
FVCOM relative to ERA5. The RMSE of the CMIP6 models ranged from 
1.94 cm/day to 5.47 cm/day, significantly exceeding the 0.33 cm/day 
found in FVCOM. Furthermore, the CC between the Ekman pumping 
velocity estimates from CMIP6 models and ERA5 ranged from − 0.14 to 
0.24, considerably lower than the CC of 0.93 between FVCOM and 
ERA5.

It can be concluded that climate models, which are capable of 
coupling multiple systems including land, atmosphere, and ocean, 
enable the simulation of a comprehensive set of variables. However, this 
capability also necessitates managing extensive parameter settings and 

Fig. 11. Comprehensive assessments of models based on DISO values against various reference datasets. “Overall” denotes the overall performance with the 
combination of various reference datasets.

Table 2 
Summary of selected ensemble members in the CMIP6 models.

Model Number of 
members

Information of ensemble members

ACCESS-CM2 10 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, 
r9i1p1f1, r10i1p1f1

ACCESS- 
ESM1-5

10 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, 
r9i1p1f1, r10i1p1f1

CanESM5 10 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, 
r9i1p1f1, r10i1p1f1

CESM2 10 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, 
r9i1p1f1, r10i1p1f1

EC-Earth3 10 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r9i1p1f1, 
r10i1p1f1, r11i1p1f1

HadGEM3- 
GC31-LL

10 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, 
r5i1p1f1, r11i1p1f1, r12i1p1f1, r13i1p1f1, 
r14i1p1f1, r15i1p1f1

IPSL-CM6A-LR 10 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, 
r9i1p1f1, r10i1p1f1

MPI-ESM1-2- 
HR

10 r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1, 
r5i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, 
r9i1p1f1, r10i1p1f1

UKESM1-0-LL 10 r1i1p1f2, r2i1p1f2, r3i1p1f2, r4i1p1f2, 
r5i1p1f3, r6i1p1f3, r7i1p1f3, r8i1p1f2, 
r9i1p1f2, r10i1p1f2
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addressing complex interactions, potentially limiting their performance 
in simulating FWC in the Beaufort Gyre region compared to specialized 
ice-ocean coupled models. Therefore, further improvements in CMIP6 
models are necessary.

5. Conclusion

The primary objective of this study is to assess the capability of 17 
CMIP6 models in simulating freshwater in the Beaufort Gyre region of 
the Arctic. To achieve this, we evaluated their performance by 

comparing them with two reanalysis datasets, as well as observational 
data. For reference, the ice-ocean coupled model, Global-FVCOM, was 
also included in the comparison. The evaluation focused on FWC and the 
structure of salinity profiles.

The intercomparison results revealed that, compared to Global- 
FVCOM, the CMIP6 models exhibited greater discrepancies in spatio-
temporal averages of FWC when compared to reanalysis data. More than 
half of the 17 CMIP6 models overestimated the spatiotemporal mean 
FWC. The errors in FWC simulation were not attributed to any time 
period but rather reflects the general inter-model spread in the spatial 

Fig. 12. Comparison of FWC internal variability among ensemble members within each model. Blue and black bar indicates the ensemble mean averaged over 
selected members and the standard deviation for each model from 2003 to 2014, respectively. Dashed lines represent the mean FWC of the ice-ocean coupled model 
and two reanalysis data.

Fig. 13. Horizontal grid points and vertical levels of 17 CMIP6 models and the ice-ocean coupled model in the Beaufort Gyre region.
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distribution of FWC. The MMM reproduced the primary characteristics 
of the CMIP6 models in terms of spatiotemporal averages of FWC.

Additionally, the 17 CMIP6 models exhibited inter-model spread in 
salinity profiles at different depths, with larger errors compared to 
Global-FVCOM. Only a few models reasonably captured the stratifica-
tion near the surface. Most CMIP6 models overestimated salinity near 
the surface. The vertical salinity errors in these models typically tran-
sition from positive at the surface to negative with increasing depth, 
eventually stabilizing.

The water column with salinity above the isohaline of 34.8 psu was 
stratified into two layers, separated by the base of the halocline. The 
primary sources of FWC error within two layers were further investi-
gated. The findings showed that, in more than half of the CMIP6 models, 
the primary source of FWC error originated from the upper layer. In 
models where the upper layer was the primary source of error, FWC was 
primarily underestimated, whereas in those models where the lower 
layer was the primary source, FWC was typically overestimated.

The evaluation results based on observational and reanalysis data 

indicated that the simulation errors of FWC in the CMIP6 models and the 
MMM were greater than those of Global-FVCOM. Among the 17 CMIP6 
models, EC-Earth3, MRI-ESM2-0, and FIO-ESM-2-0 exhibited the best 
overall performance, demonstrating relatively high CC and relatively 
small RMSE and bias. Inter-model spreads in Arctic freshwater simula-
tions predominantly reflect systematic errors, as intra-model variations 
induced by internal variability remain substantially smaller than cross- 
model differences. Several aspects, including discrepancies in numerical 
configuration, vertical mixing schemes, model resolution, freshwater 
inputs, and atmospheric forcings, have the potential to significantly 
influence the simulation results of FWC.

The evaluation results of this study indicate that the current CMIP6 
models still face challenges in simulating FWC in the Beaufort Gyre re-
gion. Compared to the ice-ocean coupled model, the simulation capa-
bilities of CMIP6 models need further improvement. These findings 
contribute to the selection and enhancement of CMIP6 models for future 
projections of freshwater variability.

Fig. 14. Monthly variation of FWF through Bering Strait from the observation, 17 CMIP6 models, and the ice-ocean coupled model over the period 2003–2014.

Fig. 15. Monthly variation of wind-induced Ekman pumping velocity from the ERA5 reanalysis, 17 CMIP6 models, and the ice-ocean coupled model over the 
period 2003–2014.
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Data availability

The CMIP6 data can be downloaded at https://esgf-node.llnl. 
gov/search/cmip6/. The Global-FVCOM data is available from the cor-
responding author upon reasonable request. The ORAS5 data is 
collected from https://www.cen.uni-hamburg.de/en/icdc/data/ocean 
/easy-init-ocean/ecmwf-oras5.html. The TOPAZ4 data is available at 
https://data.marine.copernicus.eu/product/ARCTIC_MULTIYEAR_ 
PHY_002_003/description. The CTD data is downloaded from https:// 
www2.whoi.edu/site/beaufortgyre/data/ctd-and-geochemistry/. The 
ITP data is obtained from https://www2.whoi.edu/site/itp/data/data- 
products/. The observational freshwater flux data is obtained from htt 
ps://pscfiles.apl.uw.edu/woodgate/BeringStraitArchive/BeringStrait 
MooringData/BeringStraitProducts/. The wind data of ERA5 is available 
at https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-l 
evels-monthly-means?tab=download.
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