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Abstract The estuarine plume dynamics under a downwelling-favorable wind condition were examined
in the windy dry season of the Pearl River Estuary (PRE) using the PRE primitive-equation Finite-Volume
Community Ocean Model (FVCOM). The wind and tide-driven estuarine circulation had a significant influ-
ence on the plume dynamics on both local and remote scales. Specifically, the local effect of downwelling-
favorable winds on the plume was similar to the theoretical descriptions of coastal plumes, narrowing the
plume width, and setting up a vertically uniform downstream current at the plume edge. Tides tended to
reduce these plume responses through local turbulent mixing and advection from upstream regions, result-
ing in an adjustment of the isohalines in the plume and a weakening of the vertically uniform downstream
current. The remote effect of downwelling-favorable winds on the plume was due to the wind-induced
estuarine sea surface height (SSH), which strengthened the estuarine circulation and enhanced the plume
transport accordingly. Associated with these processes, tide-induced mixing tended to weaken the SSH gra-
dient and thus the estuarine circulation over a remote influence scale. Overall, the typical features of
downwelling-favorable wind-driven estuarine plumes revealed in this study enhanced our understanding of
the estuarine plume dynamics under downwelling-favorable wind conditions.

1. Introduction

Freshwater runoff enters the sea and forms a coastal or estuarine type of river plume with distinct dynamics
occurring mainly on the shelf or within the estuary. For coastal plumes, it is commonly recognized that
winds are a dominant forcing driving the plume variability in regions where the tidal effects are ignorable
[Fong and Geyer, 2001; Garcia Berdeal et al., 2002; Lentz and Largier, 2006]. However, this characterization of
the plume dynamics may be problematic for estuarine areas where tides are usually important and the tidal
and associated effects could be very influential in the plume even in regions dominated by winds [Guo and
Valle-Levinson, 2007; Yang and Khangaonkar, 2009; Hunter et al., 2010]. Therefore, it is expected that the
interaction of the river plume with both tides and winds is a general feature of estuarine plume dynamics.

Observational and theoretical studies show that downwelling- and upwelling-favorable winds in the coastal
ocean could set up a dynamics with significantly different responses in the plume behaviors [Chao, 1988;
Muinchow and Garvine, 1993; Fong et al., 1997; Chen et al., 1999; Whitney and Garvine, 2005; Choi and Wilkin,
2007; Jurisa and Chant, 2012; Pimenta and Kirwan, 2014]. Generally, the downwelling wind stress causes a
surface shoreward Ekman circulation to compress the plume against the coast. As a result, the plume exhib-
its an along-shore propagating feature of narrow width far from the source region [Rennie et al., 1999;
Moffat and Lentz, 2012; Mazzini et al., 2014]. In contrast, the upwelling wind stress thins the plume by
enhancing its offshore spreading [Chen, 2000; Fong and Geyer, 2001; Lentz, 2004]. This process continues
under a persisting wind forcing until the strong mixing in the plume finally destroys it or the plume is even-
tually separated from the coast [Chapman and Lentz, 1994; Fong and Geyer, 2001; Houghton et al., 2004;
Hickey et al., 2005].

For an estuarine plume influenced by wind, a downwelling-favorable condition is usually strongest during
the winter when the freshwater discharge into the estuary is low and the wind is vigorous and persistent in
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the seaward direction along the coast. Theoretically speaking, there are two physical processes which are
fundamental in the downwelling-wind-forced plume dynamics under nontidal conditions [Moffat and Lentz,
2012]. One is the wind-induced deepening of the surface mixed layer, which entrains ambient water into
the plume and steepens the isopycnals in the surface layer. The other is the steepening of the isopycnals in
the plume due to the cross-shore Ekman transport, which narrows the plume width, changes the plume
depth, and enhances the along-shore water transport.

Tidal and associated effects are potentially able to interact with the winds and cause a change in the estuarine
plume dynamics. For example, tides enforce an energetic plume discharge. The resulting plume spreading
may destroy the wind-induced surface mixed layer through tidal straining that tends to prevent it from being
reestablished with enhanced vertical stratification [Simpson et al., 1990; Hetland, 2005]. Tides can precondition
the vertical orientation of isopycnals in the plume through strong mixing [MacCready and Geyer, 2010]. This
may ultimately change the timescale of cross-shore Ekman circulation in modifying the plume’s structure and
transport [Whitney and Garvine, 2005]. Since the estuarine stratification and mixing could also be controlled
by wind-induced straining of the density field [Scully et al., 2005] and the tidally induced stratification and mix-
ing has a varying strength during the flood-ebb tidal period and spring-neap cycles [Li and Zhong, 2009], the
competition of tides with winds will have an effect on the spatial and temporal variability of the plume.

In many estuaries, the interaction of the river plume with tides and winds is fundamental in the estuarine
subtidal dynamics. Generally, the subtidal dynamics in estuaries features a gravitational circulation that is
due to the interplay of the plume induced horizontal salinity gradients and tides. This creates a two-layer
flow with a surface seaward and bottom landward current under a forcing balance between the pressure
gradient force and the tidally induced turbulent mixing [Pritchard, 1956; Hansen and Rattray, 1965]. The
gravitational circulation in an estuary could be also influenced by the wind in two aspects. First, the wind
can produce a similar two-layer flow with downwind current at surface and upwind current at depth,
enhancing/reversing the gravitational circulation with a down-estuary/up-estuary wind stress [Csanady,
1973; Winant, 2004]. Second, the wind can cause a depth-independent change in the gravitational circula-
tion by setting up a sea surface slope in the estuary, enhancing the barotropic volume exchange between
the estuary and shelf [Janzen and Wong, 2002; Pfeiffer-Herbert et al., 2015]. It should be noted that these
effects of wind forcing may vary widely due to the estuary’s geometric scales and forcing characteristics.
Their influences on the gravitational circulation have the potential to change the estuarine subtidal dynam-
ics, which then modify the river plume in accordance [Scully et al., 2005]. Apparently, this effect of plume
response is different from the local adjustment of the plume dynamics, as the former is determined by the
wind forcing indirectly. This raises a question on whether or not a regional-scale (both local and remote)
downwelling-favorable wind could influence or control the estuarine subtidal dynamics. In addition, it is
clear that tide-induced strong turbulent mixing can influence the estuarine subtidal dynamics. However,
whether and to what degree this would affect the remote controlling mechanism of the plume dynamics is
still a question that deserves further investigation.

In this paper, a typical estuarine plume during the downwelling-favorable wind period was examined with
an aim at understanding the dynamical processes described above. Unlike previous studies, this research is
focused on the Pearl River Estuary (PRE), a mesotidal estuarine system located in the northern South China
Sea (SCS) [Mao et al., 2004]. As shown in Figure 1, the PRE is about 70 km long and 25 km wide and has an
average topographic depth of ~5 m. The prevailing climate in this area is controlled by the Eurasian mon-
soon [Ding, 1994], resulting in strong seasonal variability of freshwater runoff into the PRE. Typically, the
Pearl River discharge during the dry season (October-May) is around 1500 m®/s, but can increase up to
20,000 m3/s during the wet season (April-September) [Zhao, 1990]. Affected by the monsoon climate, the
wind is seasonally reversed over the coastal area. In the summer, the wind is predominantly southerly or
southwesterly and has a magnitude of ~6 m/s; while in the winter, the wind is relatively stronger which is
northerly or northeasterly and has a magnitude of ~8 m/s. During the winter dry season, the river discharge
and wind forcing produce a typical downwelling-favorable wind-induced plume, which appears along the
left (western) side of the estuary. More thorough study of plume dynamics here could enhance our under-
standing on downwelling-favorable wind-induced plumes in strong tidal environments that were not taken
into account in previous modeling experiments.

Recently, a number of observational and numerical modeling studies have been conducted for the Pearl River
plume in the dry season [Dong et al., 2004; Wong et al., 2004; Ji et al., 2011; Zheng et al., 2014; Lai et al., 2015].

LAIET AL.

DOWNWELLING WIND AND ESTUARINE PLUME 4246



@AGU Journal of Geophysical Research: Oceans 10.1002/2015JC011475

228 25 1

20 1

15 A

110 115 120

22.6

N
g
~

o,

Latitude ( N)

222

\)
22.0

113.4 113.6 113.8 114.0
Longitude ( E)

Figure 1. Enlarged view of the Pearl River estuary (PRE) with an indication of the location in the South China Sea and the model’s open
boundary (dash line) on the shelf. The red dots represent the locations where salinity data were collected. The green diamond represents
the location where a momentum balance analysis was conducted. The sections used to close the estuary in the water budget estimation
are indicated in solid blue lines labeled (1)-(4) as explained in the text. The black solid lines indicate the location of the cross-shore transect

S1 and the along-shore transect S2, respectively. The local axes in magenta color indicate the positive value of the x (along-shore) and y
(cross-shore) direction defined in Figures 9 and 12.

Based on the results, it is clear that the wind forcing has a major influence on the plume with a time scale
longer than the tidal periods. However, little research has been conducted to examine the plume dynamics
under the wind's influence in detail. To address this question, it is necessary to establish a high-resolution 3-
D circulation model that is capable of resolving the complex estuarine environment in the PRE with realistic
geometry and forcing conditions. Recently, we have developed such a model and successfully used it to
understand the impact of the multichannel river network on the plume dynamics in the dry season [Lai
et al., 2015]. This model allows us to investigate the downwelling-favorable wind-induced plume dynamics
in the PRE, particularly on addressing questions related with saltwater intrusion, water quality, and

ecosystem function and health in the dry season [Dai et al., 2006; Qiu et al., 2010; Gong and Shen, 2011;
Zhang et al., 2012].

The remainder of this paper is organized as follows. In section 2, the model setup, forcing conditions, and
model validation are described. In section 3, the major findings of the plume structure and dynamics associ-

ated with tides and winds are presented, followed by a detailed discussion in section 4. Finally, the conclu-
sions are summarized in section 5.
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2. Model Setup and Validation

2.1. Model Setup

The numerical study was based on the Pearl River Estuary 3-D primitive equation, Finite-Volume Community
Ocean Model (PRE-FVCOM) [Lai et al., 2015]. FVCOM was originally developed by Chen et al. [2003] and has
been continuously improved and updated by the joint research team of University of Massachusetts-
Dartmouth and Woods Hole Oceanographic Institution [Chen et al., 2006a, 2006b, 2013]. The PRE-FVCOM
was configured in the manner as described by Lai et al. [2015], in which several key features were designed
that makes the model particularly suited for the simulation of the Pearl River plume in the dry season.
First, the model has a large computational domain that not only extends to the shelf of the northern SCS
along the 100 m isobath but also covers the entire Pearl River network by setting the river boundary at the
upstream limit of tidal influence. With this, it is capable of resolving the interaction of the river network and
the estuary, a key aspect of the plume dynamics in the dry season [Lai et al., 2015]. Second, PRE-FVCOM has
an unstructured horizontal grid with a resolution varying from ~10 km at the open boundary down to
~20-300 m within the Pearl River. Geometric flexibility in the grid configuration provides a realistic and
accurate representation of the complex coastline and islands in the PRE. Vertically, the model has 45 layers
configured with a hybrid terrain-following coordinate, using the s-coordinate transformation in water
depth > 225 m and the og-coordinate in water depth <225 m. The transition between the two coordinates
is at the 225 isobath where all layers have a uniform thickness of 5 m. The s-coordinate is configured with a
depth-independent uniform layer thickness in the upper water column and over the bottom slope in the
continental shelf, which are critically important to resolve the wind-induced surface mixed layer and tidal-
induced sloping bottom boundary layer [Chen et al, 2016]. The o-coordinate used in the model ensures
that the vertical circulation can be resolved well enough in this shallow estuary where the tidal range is
~2 m and the undistributed mean water depth is ~5 m [Lai et al., 2015]. In addition, the combination of the
PRE-FVCOM horizontal and vertical spatial resolution is such that the transport through the QiAo Channel
(Figure 1) could be simulated correctly in order to capture the plume structure and dynamics over the West
Shoal [Lai et al., 2015]. Third, the model is driven under realistic forcing conditions that include well-
calibrated tidal elevations at the open boundary, observed river discharge at upstream hydrological stations
and predicted surface forcing from a 4 X 4 km resolution WRF (Weather Research and Forecast) community
mesoscale weather model. This is important because it not only allows a more straightforward model-data
comparison but also drives a highly accurate plume field, which is a prerequisite for the following analysis
of the dynamics.

Finally, it is worth noting that the simulation was conducted with both spatially varying temperature and
salinity (T/S) fields, even though temperature has less contribution to the density of the PRE. To set up the
temperature and salinity simulation, an initial climatology of the T/S field was specified in the model. In
addition, a proper tracer radiation condition was set at the open boundaries. For the tracer condition at the
river boundaries, we simply set the salinity to be 0 and the temperature to be a constant value that varies
seasonally. Having been described thoroughly, these and other details on the model setup can be found in
Lai et al. [2015].

2.2. Forcing Conditions

The numerical model simulation was chosen for a period from 1 November to 31 December 2006, during
which the observations obtained from a field survey conducted on 20-21 December 2006 were available
for model-data comparisons. A total of 37 CTD stations were sampled at the locations indicated in Figure 1
during spring tidal period [Liu et al., 2006]. This data set has a good spatial coverage over the PRE with a
high sampling resolution, which is particularly useful to validate the model-predicted plume structure.

The time series of the total Pearl River discharge during the model simulation period had a peak around 22
November 2006 (Figure 2). After that, the discharge gradually decreased and remained stable at a mean
level of ~3000 m?/s over December 2006. Since the river discharge that enters the PRE was roughly half of
the total Pearl River discharge, the model-predicted plume exhibited a size comparable to the climatologi-
cal mean with small fluctuations caused by the variations of the total river discharge.

Wind plays a critical role in the successful simulation of the wind-forced plume dynamics. For this study,
three wind time series were generated (Figures 3a-3c, left). First, the measured hourly wind at Hong Kong
airport was chosen to represent the wind field over the PRE (hereafter referred to as Wind HK). Second, the
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8000 output from a 4 X 4 km resolu-
Nov. 2006 Dec. 2006 tion north SCS WRF model
(hereafter referred to as Wind
WRF) was used. Third, the north
SCS WRF was rerun with assimi-
lation of the measured hourly
wind at the three airports
around the PRE (hereafter ref-
erred to as Wind WRF-assim). To
view the differences among the
three wind time series, one can
Figure 2. Time series of the hourly total Pearl River discharge during the model simulation examine the left plot in Figure
period. 3. Generally, the time series

of Wind HK showed a relati-

vely smaller magnitude in wind
speed and a larger variation in wind direction. This is contrary to the Wind WRF time series, which showed a
relatively larger magnitude in wind speed and a smaller variation in wind direction. In contrast, the Wind
WREF-assim looked more like a combination of the Wind HK and the Wind WRF. To compare the three winds
more clearly, the monthly mean wind field over the PRE is shown in the right plot of Figure 3. Consistent
with the time series data, the Wind WRF-assim had a magnitude that was stronger than the Wind HK but
weaker than the Wind WRF. However, all winds had a similar direction, which is northeasterly, even though
they exhibited a different degree of variation (Figure 3, right). In order to determine which wind forcing is
the best for the following analysis, numerical experiments were designed to examine the simulated plume
under the three winds by comparing with the observations, respectively. For the purpose of analysis, two
additional numerical experiments were conducted. Specifically, one experiment aimed to examine the
plume dynamics without the wind effect (referred as “with no-wind”). The other experiment aimed to exam-
ine the plume dynamics without the effect of tides (referred as “with no-tide”). In the latter case, the wind
forcing was the same as that used in the Wind WRF-assim case.
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Figure 3. (left) Time series of the single point wind speed and direction (location: 113.75°E, 22.35°N) in the case of Wind HK, Wind WRF,
and Wind WRF-assim, respectively during the GMT time from 1 November to 31 December 2006. (right) The monthly mean wind field in
the case of Wind HK, Wind WRF, and Wind WRF-assim, respectively. The locations of the airports in Shen Zhen (SZ), Hong Kong (HK), and
Macau (MC) surrounding the PRE are indicated. The hourly wind data collected from these airports’ weather stations were used for the
data assimilation in the WRF model.
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Figure 4. Model-data comparison of the surface salinity field predicted in the case of Wind WRF-assim. (Since density in the PRE region is
dominated by salinity, we plot only salinity in this and following figures.)

2.3. Model Validation

The model-predicted values of salinity were output at the same locations and times where and when the
observations were made, and the model-data comparison was made on the observed surface plume. Taking
the Wind WRF-assim case as an example, the model results matched the observations very well in both the
salinity values and the spatial distribution (Figure 4). Specifically, the observations showed a clear pattern of
salinity contours roughly in the northeast-southwest orientation, with low-salinity water (<20) located at
the estuary head and the northwest corner around the mouths of river outlets and high-salinity water (>32)
intruding toward the northeast from the shelf. The model-simulated salinity field resembled that to a large
degree, except that the area of low-salinity water at the head of the estuary was relatively larger. The model
pushed the local salinity contours farther offshore in the southeast direction.

To quantify the accuracy of the model results, three parameters were calculated: the root-mean-square
(RMS) error, the correlation coefficient (CC), and a non-dimensional skill assessment parameter defined in
Warner et al. [2005] and used by Pan et al. [2014] to validate their model results in the PRE. The skill parame-
ter is given as

Skil]=1 — i1 Cmo ~5o0)”
24{\1:1 (Ismo—Sob|+ |5ob—§ob|)2

m

where sy, and s, represent the model and observed salinity, respectively, the overbar means averaging
over the data set, and N is the number of observations.

To assess the accuracy of the three wind fields used in the plume simulations, the same model-data
comparisons for the Wind HK, Wind WRF, and WRF-assim cases are plotted in Figure 5. The results
showed that with a stronger magnitude of wind, the model with Wind WRF overestimated the surface
salinity values or alternatively underestimated the plume, while the model with Wind HK underesti-
mated the salinity values and overestimated the plume. The model with Wind WRF-assim produced
the best model-data comparison.

LAIET AL.

DOWNWELLING WIND AND ESTUARINE PLUME 4250



@AGU Journal of Geophysical Research: Oceans

10.1002/2015JC011475

35

30

74
5o f"é "

This conclusion was also confirmed by the
statistical error analysis. While the results
shown in Table 1 indicated that although
all wind fields could produce a plume

] o C%’ I :’:J with a structure similar to the observed
25 1 5 O.’ . I salinities, the size of the plume was very
o W ‘ = ) sensitive to the magnitude of the wind.
20 ] 5 o . PY x.’ 9'. u . The model-predicted plume forced by the
3 ] /'('QD S mus Wind WRF-assim field was optimal, with a
g o« ® % U model skill parameter of 0.98, very close

15 - /" . to perfect skill (a value of 1).

e
O’ = [ |
10 ',o" L 3. Results
4
'/' 3.1. Plume Geometry

5 o B Wind HK The detided mean geometry of the
] '," O : Wind WRF model-predicted plume was examined
1,7 ® : Wind WRF-assim over the period December 2006. The
0 0 5 10 s 2 2 30 3 subtidal feature of the plume was
Obs obtained by removing the diurnal and

higher-frequency tidal signals using a
33 h low-passed filter (named PL64TAP)
[Beardsley and Rosenfeld, 1983]. Alterna-
tively, one could choose a more thorough way by subtracting tides from the hourly time series using T_Tide
[Pawlowicz et al., 2002]. Since no significant difference was found using these two methods, we present the
33 h low-passed filter results.

Figure 5. Model-data comparison of surface and subsurface salinity in the case
of Wind HK, Wind WRF, and Wind WRF-assim, respectively.

The mean surface plumes for the cases with (a) no-wind, (b) Wind HK, (c) Wind WRF-assim, and (d) Wind
WRF are shown in Figure 6. The results show that winds cause a significant reduction of the plume’s lateral
scale. The downwelling-favorable winds play a dominant role in determining the plume’s subtidal structure
even under relatively strong tidal conditions. In addition, comparing the plume width as a function of wind
speed (Figure 3) indicated that the lateral scale of the plume was reduced significantly during a certain
range of the wind speed increase and then converged toward a more stable scale as the wind continuously
intensified. This suggests that the effect of the downwelling-favorable winds on the plume width may have
an upper cap if the wind strength exceeds a certain threshold.

To quantify the subsurface response of the plume under a downwelling-favorable wind forcing, we exam-
ined the plume’s vertical structure on the transect S1. Based on Figures 6c and 6d, the plume with
downwelling-favorable winds only appeared along the west PRE with the spatial distribution parallel to
local isobaths and converged toward the west as the wind increased. Therefore, transect 1 is a cross-estuary
section, running from the west coast to the mouth of the estuary. Although this section was not long
enough to cover the entire structure of the plume under the no wind condition, it showed little influence
on the analysis results presented in the following discussion. In the following analyses of the effects of tides
in the plume dynamics, the results of the Wind HK case were replaced by the results of the no-tide case,
since the formal can be interpreted based on the results from the no-wind and the Wind WRF-assim cases.

The mean salinity distribution along the transect S1 is shown in Figure 7 for the four cases described above.
Consistent with the change of the plume’s surface expression, the downwelling-favorable wind-induced
cross-shore Ekman circulation caused a substantial adjustment of the plume’s lateral scale at depth. For
example, without wind forcing the plume could
expand over the continental slope, with top-to-

Table 1. The Model-Data Statistical Parameters for the Simula- . . . . . .
bottom isohalines sloping in the offshore direction.

tions Driven by the Wind HK, Wind WRF, and Wind WRF-assim

Wind Fields In the three cases with wind forcing, the plume
Case RMS cc Skill was confined on the shelf with the isohalines being
Wind HK 53 0.93 084 nearly vertical. This large contrast in the plume’s
Wind WRF-assim 18 0.96 0.98 vertical structure was reported in previous studies,
Wind WRF 27 0.94 0.94

which was associated with the plume’s initial
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Figure 6. Model-predicted mean surface salinity and current in the case (a) with no-wind, (b) the Wind HK case, (c) the Wind WRF-assim
case, and (d) the Wind WRF case, respectively.

geometry at the start of wind blowing under a nontidal condition [Moffat and Lentz, 2012]. This should also
be valid in the current study under tidal and varying wind environments. In addition, the results in Figure 7
suggest a secondary role of tides on the plume’s subtidal structure since the salinity distributions in the
case with no-tide and the Wind WRF-assim case looked very similar.

To qualify the effect of tides on the plume’s geometry, we next examined the salinity difference on the tran-
sect S1 for the cases with no-wind, no-tide, and Wind WRF, respectively, relative to the Wind WRF-assim
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Figure 7. Model predicted mean salinity distributions along section S1 in the (a) case with no-wind, (b) case with no-tide, (c) the Wind
WRF-assim case, and (d) the Wind WRF case, respectively.

case (Figure 8). In the no-wind case, the offshore spreading of the plume caused a large area of negative
salinity difference. While both in the no-tide and the Wind WRF cases, it showed a positive salinity differ-
ence in the river plume except in the nearshore region. A further comparison showed that the detailed pat-
tern of the salinity difference in the no-tide and Wind WRF cases was distinct. For example, in the no-tide
case, there was a bottom area of large salinity difference which was suspected to be associated with the
tidally induced strong turbulent mixing in the bottom boundary layer. In addition, the salinity difference in
the no-tide case tended to be strong at surface and bottom with a minimum located in the middepth, sug-
gesting that tides had an effect to adjust the vertical orientation of the isohalines in the plume. In contrast,
however, the maximum of the salinity difference in the Wind WRF case was only located at the surface,
which was consistent with the surface Ekman dynamics as a stronger wind stress could cause an enhanced
surface turbulent mixing. Finally, in both the no-tide and Wind WRF cases, the maximum salinity difference
tended to be centered at a distance about 10-11 km along the profile. We will return to this point in the fol-
lowing analysis.

3.2. Plume Current

The model-predicted mean currents on the transect S1 for the four cases are shown in Figure 9. In contrast,
the plume with no wind featured a two-layer flow with offshore/onshore current in the cross-shore direction
and downstream/upstream current in the along-shore direction. Downwelling-favorable wind enhanced
the two-layer flow in both the cross-shore and along-shore directions and intensified the flow in the surface
layer. Comparing the results for the cases with (a) no-wind and (c) Wind WRF-assim suggested that the
near-surface flow intensification was most obvious in the along-shore direction, resulting in a vertically uni-
form downstream current that first appeared at the shelf-break and then expanded in width with the
increase in wind speed. In all wind-forcing cases, there existed a cross-shore flow convergence on the off-
shore side of the vertically uniform downstream current. This was also evident in Figure 6, marking the
boundary between the near-shore plume water and the offshore shelf water.

The tidal effects on the current structure of the plume are evident in Figure 9 by comparing the cases with
(b) no-tide and (c) Wind WRF-assim. With the inclusion of tides, the two-layer flow in the cross-shore and
along-shore directions became relatively weaker. In addition, tides significantly weakened the vertically uni-
form downstream current. It seems to be counter to our understanding on the role of tides in the plume,
which was expected to increase vertical mixing and overcome the upstream buoyancy input. A possible
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. 18 where the two-layer flow disappeared
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Distance (km) of vertical mixing by buoyancy input.

In both (c) Wind WRF-assim and (d)

Figure 8. Salinity difference in the (a) with no-wind, (b) with no-tide, and (c) Wind Wind WRF cases, the nearshore region

WRF cases, respectively, relative to the Wind WRF-assim case along section S1. .
was dominated by the process of

buoyancy input which prevented mix-
ing through wind stirring. In the offshore region, this relationship was reversed frequently due to the
strengthening of wind forcing.

Finally, the comparison between Figures 9b and 9c suggested that the increased downstream plume water
transport in the no-tide case should not be purely the effects of local tidal mixing or upstream buoyancy
input. Based on the plume theory, the wind-driven circulation only induces a change of vertical velocity pro-
file without incurring any net water transport. This means that other effect of tides could be involved in the
downwelling wind-forced plume dynamics.

3.3. Plume Front

The plume featured a density front which could be influenced by the downwelling-favorable wind. In
Figure 11, the surface and bottom salinity gradients on the transect S1 were estimated to define the fronts
based on the salinity distributions displayed in Figure 7. The results showed that, in all cases, the front posi-
tion remained unchanged, with the surface front located at x = ~6 km and the bottom one located at
Xx = ~4 km, about 2 km closer to the coast.

The momentum balance analysis (shown in Figure 12) was conducted at a location of the front (Figure 1) to
examine the underling dynamics that led to the model predicted frontal structure. With no-wind, the cross-
shore momentum was fundamentally geostrophic with a barotropic pressure gradient force balanced by
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Figure 9. Model predicted mean current along section S1 in the (a) with no-wind, (b) with no-tide, (c) Wind WRF-assim, and (d) Wind WRF cases, respectively. The vectors represent the
cross-shore current while the color image represents the along-shore current with the downstream current indicated by negative values and vice versa.

the Coriolis force at the surface. The baroclinic pressure gradient force increased with depth, which was bal-
anced by the barotropic pressure gradient force, the Coriolis force, and the bottom friction at the bottom.
Turning on the wind forcing did not change the dominant cross-shore momentum balance. The only differ-
ence is that the wind enhanced the vertical diffusion term. In this case, a much stronger barotropic pressure
gradient force was required to act against the surface wind drag force and to balance the baroclinic pres-
sure gradient force at depth. Apparently, the results suggest that although the downwelling-favorable
winds cause a significant adjustment of the cross-shore barotropic/baroclinic pressure gradients, their
effects on the momentum balance are largely canceled out by each other. Therefore, the cross-shore plume
dynamics should be under a geostrophic balance with an offshore distance of the front determined by the
internal Rossby radius of deformation [Lentz and Larger, 2006].

The internal Rossby radius of deformation is defined here as R= @ where H, is plume thickness, f is the
Coriolis parameter and g’=g% given the gravity g, the reference density p, and the fluids’ density differ-
ence Ap between the distance at the coast and the front. The characteristic values used in the estimation
were H,=6 m, f=5.5316X10"> 1/s and the surface Ap= 1.8, 44, 43, and 5.9 kg/m3 for the cases with (a)
no-wind, (b) no-tide, (c) Wind WRF-assim, and (d) Wind WRF, respectively. The resulting R was 5.9, 9.2, 9.1,
and 10.6 km for the four cases. It was clear that the estimated R could match the offshore distance of the
surface front only in the case with no-wind. In all other cases with wind forcing, R was much larger than the
model-predicted values. Again, this result confirms that the downwelling-favorable winds are not able to
change the location of the front which has an offshore distance determined by R under the no-wind

condition.

This result may also explain why the strong cross-shore salinity difference in Figure 8 tended to be centered
at a location about 10-11 km offshore. This suggests that the cross-shore plume dynamics is different on
the inshore and offshore sides of the front. Specifically, the cross-shore Ekman dynamics is effective at the
offshore side of the front where the plume’s lateral scale is compressed and cross-shore salinity gradients
are larger. On the inshore side of the front, the wind effects on the cross-shore momentum balance are can-
celed out by each other and the plume remains geostrophic in the cross-shore direction.
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no-tide, (c) the Wind WRF-assim, and (d) Wind WRF cases, respectively. The definition of the Richardson number is explained in the text.
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Previous studies revealed that buoyant coastal plumes over the continental shelf were dynamically under a
semigeostrophic balance with an along-shore current profile following the thermal wind relationship [Blan-
ton, 1981; Garvine, 2004; Lentz and Largier, 2006]. For the plume in the PRE, we did not find this feature. Our
results suggested that based on the along-shore momentum balance, the plumes had a significant longitu-
dinal acceleration under both tidal and wind conditions (Figure 12, right), so that the plume theory based
on simple linear dynamics was not applicable.

3.4. Plume Transport

The investigation of the current structure in Figure 9 suggested that the increased plume transport in the
case with no-tide should not be purely due to a local adjustment of plume dynamics. To understand the
associated dynamics, the connection of the plume transport with the freshwater input and the estuary-shelf
exchange was examined to see whether it was associated with the estuarine circulation. In order to do that,
the PRE was treated as a closed body of water by defining sections at the river outlets, the estuary mouth,
and the deep channel between Hong Kong Island and the mainland of the delta (Figure 1). The mean subti-
dal transport through these sections was calculated by filtering the hourly model output and averaging the
time series over the period of December 2006. This method was the same as described in Lai et al. [2015].
For the ease of analysis, the transports through the four river outlets were summed up and labeled as “(1)”
which collectively represented the freshwater input from the Pearl River, while the transport through the
estuary mouth needed to be divided into two parts which roughly separated the section of plume transport
“(2)" from the estuary-shelf exchange “(3)” in the rest of the section. Finally, the transport through the chan-
nel between the Hong Kong Island and the mainland of the delta was labeled as “(4).”

The results (displayed in Figure 13) showed that with a same freshwater input from the river, the water
budget in the estuary determined the plume transport at the estuary mouth was exactly balanced by the
estuary-shelf exchange with a pattern completely different for the cases with/without the effects of wind.
Specifically, the removal of the wind forcing caused the plume water to be transported out of the estuary
mainly through the sections (3) and (4) while the transport at section (2) was directed upstream as compen-
sation. These results were consistent with the corresponding features of the plume at the surface (Figure
6a) and in the cross-shore section (Figure 9a). In contrast, when the wind forcing was turned on, such a
clockwise pattern of the estuarine water transport was reversed. It was characterized by a strong plume
transport out of the estuary at section (2) and enhanced water exchange into the estuary at sections (3) and
(4). This finding suggests that for a downwelling wind-forced estuarine plume, the increased water transport
in the plume might not fully be the
i results of the local adjustment of the
With no-wind dynamics and that the wind-induced
T e i estuary-shelf exchange could be
——— Wind WRF important too. In addition, the results
showed a consistently enhanced trans-
port at sections (2)-(4) in the case with
no-tide comparing with the Wind
WRF-assim case. This confirms that
tides should also be involved in the
process of the estuary-shelf exchange
to provide a remote mechanism on
the plume dynamics.

Salinity gradient (km ')

4, Discussion

Salinity gradient (km‘l)

Previous studies of the downwelling
wind-forced plumes were focused on
0 ' 1o ' 2 50  thelocal processes of wind influences.

Distance (km) Our numerical model study of the PRE
plume suggests that the regional-scale

Figure 11. Calculated surface and bottom salinity gradient along section S1 in d lli f bl ind Id
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cases, respectively. also have a remote influence on the
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Figure 12. Monthly mean along-shore and cross-shore momentum balance in the (a) with no-wind, (b) with no-tide, (c) Wind WRF-assim, and (d) Wind WRF cases, respectively, at the

location indicated in Figure 1.

estuarine plume dynamics. By analyzing the water budget in the PRE, it is clear that this remote mechanism
is associated with the wind-driven estuarine circulation, which enhances the plume transport through an
active estuary-shelf exchange.
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Figure 13. Transport at section (1)-(4). The transport in the (a) with no-wind, (b) with no-tide, (c) Wind WRF-assim, and (d) Wind WRF cases,
respectively, is arranged at each section in an order from left to right. The positive value means the net transport is directed into the

estuary and vice versa.
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Figure 14. Monthly mean sea surface height in the (a) with no-wind, (b) with no-tide, (c) Wind WRF-assim, and (d) Wind WRF cases, respec-
tively. The location of the transect S2 along the deep channel is indicated.

To understand the physical processes in more details, the mean subtidal sea surface height (SSH) was exam-
ined in Figure 14. It showed that there were three components of the SSH over the PRE which were caused
by freshwater discharge, tides, and the winds, respectively. In case (a) with no wind, the combination of the
freshwater discharge and tides resulted in a gravitational circulation with higher SSH located at the head of
the estuary setting up a pressure gradient force to push the plume seaward. The components of the SSH
due to the effect of winds in the cases with (c) Wind WRF-assim and (d) Wind WRF then could be derived by
calculating the difference of those results obtained from case (a).

As displayed in Figures 15b and 15¢, the results showed that the downwelling-favorable wind caused a pat-
tern of the estuarine SSH which was generally opposite to that of the gravitational circulation with a center
of low SSH located at the estuary head extending seaward in the direction of the winds and being
embraced by higher SSH in the surrounding area. This wind-induced SSH may drive an estuary-shelf
exchange with landward currents intruding upstream at the bottom and carrying the high salinity water
into the PRE. To see this wind-induced SSH effect, an along-estuary transect S2 was chosen, which ran from
the estuary mouth to the estuary head following the deep channel (Figure 1). By comparing the results in
Figures 15d, 15f, and 15g, it was evident that when the wind forcing was turned on, the along-estuary
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Figure 15. (left) Mean SSH in the case (a) no-tide: no-wind, (b) Wind WRF-assim: no-wind, and (c) Wind WRF: - no-wind, respectively. Please note that although the color range is differ-
ent among the three cases, the absolute difference is the same so that the SSH gradients in the three cases are still comparable. (right) Mean salinity and currents along transect S2 in
the (d) with no-wind, (e) with no-tide, (f) Wind WRF-assim, and (g) Wind WRF cases, respectively.

salinity contours significantly moved upstream under a stronger subsurface landward current. If comparing
the upstream movement of the along-estuary salinity distributions with enhanced SSH gradients between
the cases with Wind WRF-assim and Wind WRF, one could find that those changes occurred coincidently
with the increase in wind speed. Therefore, the estuarine SSH produced by the remote influence of the
regional-scale downwelling-favorable winds should drive an active estuary-shelf exchange through the sec-
tions at (3) and (4) (Figure 13). The intruded shelf water then had to be raised up at the center of the low
SSH where it mixed with the discharged riverine water and to form the river plume with an enhanced trans-
port as demonstrated in Figure 13. With this analysis, it is clear that the estuarine SSH set up by the
downwelling-favorable wind represented the key physical mechanism to control the plume dynamics
remotely.

To qualify the effect of tides on the plume dynamics through the estuarine SSH, the SSH in the case with
no wind was subtracted from the SSH in the case with no tide in Figure 14 and the result is shown in
Figure 15a to compare with the results in Figure 15b. It showed that with the same downwelling wind, the
removal of the tidal effects caused an even stronger SSH gradient. Associated with that, the along-estuary
salinity contours shifted farther toward the estuary head with the help of a significantly strengthened sub-
surface landward current (Figures 15e and 15f). By comparing the results in Figures 13-15 among all cases,
it was evident that the case with no-tide had the strongest SSH gradient. Therefore, it caused the longest
distance of the upstream intrusion of the salinity contours under the strongest subsurface landward current.
As a result, there was the largest volume of the plume transport through section (2). This result clearly dem-
onstrates that the role of tides on the plume dynamics is important not only locally but also remotely. This
finding is consistent with previous studies, which show that the tidally induced turbulent mixing is an
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Figure 16. Schematic plot of the PRE plume dynamics under downwelling wind during the dry season.

important term in the estuarine dynamics [Hansen and Rattray, 1965; Csanady, 1973]. So, tides could affect
the estuarine circulation and then influence the plume dynamics remotely.

5. Conclusions

Estuarine plume dynamics under a downwelling-favorable wind condition were examined in the Pearl River
estuary using the PRE primitive-equation Finite-Volume Community Ocean Model (PRE-FVCOM). The numer-
ical study was conducted in an estuarine environment with strong tidal influences and active wind-induced

estuary-shelf exchange. These processes caused the plume to behave under more complex physics that has
not been well addressed in previous studies.

According to the model results, we have summarized the plume dynamics under the downwelling-
favorable winds with the local and remote influences of tides and winds (Figure 16). Specifically, the local
effects of the downwelling-favorable winds on the plumes were similar to the theoretical descriptions of

LAIET AL. DOWNWELLING WIND AND ESTUARINE PLUME 4261



@AGU Journal of Geophysical Research: Oceans

10.1002/2015JC011475

Acknowledgments

This research work was supported by
the National Natural Science
Foundation of China (grant 41206005),
the Ocean Public Welfare Scientific
Research Project, State Oceanic
Administration of the People’s
Republic of China (grant 201305019-3),
the Special Program for Applied
Research on Super Computation of the
NSFC-Guangdong Joint Fund (the
second phase), and the CAS Strategic
Pilot Science and Technology
(XDA11020205). Changsheng Chen’s
participation was supported by the
International Center for Marine
Studies, Shanghai Ocean University.
We would like to thank the National
Supercomputer Center in Guangzhou
and the Network and Information
Technology Center at Sun Yat-sen
University for providing the computing
resources. The model data used in the
paper are accessible by contacting the
authors through the email address
laizhig@mail.sysu.edu.cn and
describing the purpose of usage. The
observation data were collected from
the 908 Ocean Survey Project which
has to be accessed through the
Project’s public office.

coastal plumes which narrow the plume width and enhance the plume transport by setting up a vertically
uniform downstream current at the plume edge. The inclusion of tides tended to weaken the effect of wind
in the plume. Specifically, the effect of tides on the plume geometry was through turbulent mixing, which
resulted in an adjustment of the isohalines in the plume. Besides that, the effect of the tides on the plume
current was to enhance the buoyancy input from the upstream region which suppressed the local wind-
induced mixing and weakened the vertically uniform downstream current. Effects of these local tides and
winds on the plume mainly occurred on the offshore side of the front. On the inshore side of the front, the
wind effects on the cross-shore momentum balance were canceled out by each other and the plume
remained geostrophic with an offshore distance determined by the internal Rossby radius of deformation.

Finally, the estuarine sea surface elevation set up by the downwelling-favorable wind represents the remote
controlling mechanism of the plume dynamics in the PRE. It drove an estuarine circulation with an active
estuary-shelf exchange into the interior of the estuary. The intruded high-salinity shelf water was mixed
with the discharged riverine water at the head of the estuary to form the plume and significantly enhance
the plume transport. Again, tides can be involved in this process because the tidally induced turbulent mix-
ing was an important term in the momentum balance of the estuarine circulation. As a result, tides can
remotely influence the plume dynamics by weakening the estuarine circulation.
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