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[1] The Integrated Ocean Observing System Super-regional Coastal Modeling Testbed had one
objective to evaluate the capabilities of three unstructured-grid fully current-wave coupled
ocean models (ADCIRC/SWAN, FVCOM/SWAVE, SELFE/WWM) to simulate extratropical
storm-induced inundation in the US northeast coastal region. Scituate Harbor (MA) was chosen
as the extratropical storm testbed site, and model simulations were made for the 24–27 May
2005 and 17–20 April 2007 (‘‘Patriot’s Day Storm’’) nor’easters. For the same unstructured
mesh, meteorological forcing, and initial/boundary conditions, intermodel comparisons were
made for tidal elevation, surface waves, sea surface elevation, coastal inundation, currents, and
volume transport. All three models showed similar accuracy in tidal simulation and consistency
in dynamic responses to storm winds in experiments conducted without and with wave-current
interaction. The three models also showed that wave-current interaction could (1) change the
current direction from the along-shelf direction to the onshore direction over the northern shelf,
enlarging the onshore water transport and (2) intensify an anticyclonic eddy in the harbor
entrance and a cyclonic eddy in the harbor interior, which could increase the water transport
toward the northern peninsula and the southern end and thus enhance flooding in those areas.
The testbed intermodel comparisons suggest that major differences in the performance of the
three models were caused primarily by (1) the inclusion of wave-current interaction, due to the
different discrete algorithms used to solve the three wave models and compute water-current
interaction, (2) the criterions used for the wet-dry point treatment of the flooding/drying
process simulation, and (3) bottom friction parameterizations.

Citation: Chen, C., et al. (2013), Extratropical storm inundation testbed: Intermodel comparisons in Scituate, Massachusetts,
J. Geophys. Res. Oceans, 118, doi:10.1002/jgrc.20397.

1. Introduction

[2] Coastal inundation along the U.S. East Coast is
defined as flooding of dry land caused generally by hurri-

canes (tropical cyclones) and extratropical cyclones [Ber-
nier and Thompson, 2006]. Storms can generate strong
winds and high surge, and the combined wind waves and
storm surge during high tide can produce significant inunda-
tion and severe damage in the coastal zone. In Massachu-
setts, coastal inundation is frequently caused by strong
extratropical cyclones (e.g., nor’easters) and much less fre-
quent tropical cyclones. In the past 30 years, more than 15
notable nor’easters swept through New England, but only
two hurricanes were recorded [http://en.wikipedia.org/wiki/
Nor%27easter]. For example, the April 2007 extratropical
cyclone (the ‘‘Patriot’s Day Storm’’) had a center barometric
pressure as low as 968 hPa and an intensity similar to a mod-
erate category II hurricane. The storm produced strong
winds (peak gusts above 70 m/s) and 8 m waves above high
tides (1.2 m above normal) and caused serious coastal flood-
ing in eastern Massachusetts (esp. Cape Ann to Nantucket),
with damage of �$216M in New England [National
Weather Center, 2007; McFadden, 2007].

[3] The NOAA National Weather Service (NWS) has
primary responsibility for forecasting coastal hazards
including surface winds, waves, storm surge, and
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inundation. The NWS Weather Forecast Offices (WFOs) in
Taunton (MA) and Grey (ME) selected Scituate as its first
pilot site to improve its coastal inundation forecast capabil-
ity. The Northeast Regional Association of Coastal Ocean
Observing Systems (NERACOOS) was established in late
2007 as part of the NOAA-led US Integrated Ocean
Observing System (IOOS). The modeling component of
NERACOOS has two primary objectives : establishing a
regional ocean forecast system and developing the capabil-
ity for ‘‘end-to-end’’ inundation forecasting in Scituate
(Figure 1). In the last three years, the University of
Massachusetts-Dartmouth (UMassD) and Woods Hole
Oceanographic Institution (WHOI) FVCOM development
team has made significant progress in establishing the
Northeast Coastal Ocean Forecast System (NECOFS) and
placing the FVCOM-based Scituate inundation forecast
model into operation (http://fvcom.smast.umassd.edu/).

[4] In 2010, NOAA-led IOOS launched a Super-regional
Testbed to Improve Models of Environmental Processes for
the U.S. Atlantic and Gulf of Mexico coasts program in
2010 (http://testbed.sura.org/). One objective of the inun-

dation/storm surge component was to evaluate the capabil-
ities of three unstructured-grid fully current-wave coupled
ocean models (ADCIRC/SWAN, FVCOM/SWAVE,
SELFE/WWM) to simulate extratropical storm-induced
inundation in the northeast. Scituate was chosen as the
extratropical storm testbed site to take advantage of the
existing FVCOM-SWAVE inundation forecast model de-
velopment by NECOFS and desire to use the testbed results
to improve NWS WFO inundation warning forecasts. The
24–27 May 2005 and 17–20 April 2007 (Patriot’s Day
Storm) nor’easters both caused significant flooding and
were selected for study.

[5] ADCIRC, FVCOM, and SELFE are fully nonlinear
primitive equation unstructured-grid coastal ocean models
with the same governing equations and turbulent closure
schemes [Chen et al., 2003, 2006a, 2006b, 2011; Luettich
and Westerink, 2004; Zhang and Baptista, 2008]. The dif-
ference between these models is mainly in the discrete
algorithm used: ADCIRC and SELFE are coded with the
finite-element method and FVCOM with the finite-volume
method. These models were validated for benchmark test

Figure 1. Bathymetry of Scituate Harbor, MA. Colors are the water and land height in meters, with
negative values for the water depth and positive values for the land height. Sites labeled A-E (marked by
dots) and transects labeled a1-a2, b1-b2, and c1-c2 (marked by blue straight lines) were the places
selected for the time series comparison of water elevation, significant wave height, and net volume fluxes
among ADCIRC, FVCOM, and SELFE.
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problems and numerous applications for consistency, sta-
bility, convergence, conservation, boundedness, and reality.
Conceptually, for given same forcings and parameteriza-
tions, the discrete schemes used in these models should all
converge toward the same solution, as the model resolution
is refined. In real applications, however, due to restrictions
of computational resources and efficiency, these models are
frequently run with insufficient horizontal resolution to
capture the key multiscale processes. Under such condi-
tions, the models may perform differently, not only in nu-
merical accuracy but also in dynamical responses to
external forcing.

[6] The surface wave models implemented in these three
models are different : SWAN for ADCIRC [Zijlema, 2010],
SWAVE for FVCOM [Qi et al., 2009], and WWM for
SELFE [Roland, 2009]. Although the governing equations
for these models are the same, discrete algorithms used to
solve the wave spectrum density equation and dynamic
assumptions made in the current-wave coupling could lead
to differences in simulation results and hence coastal inun-
dation. By using the same unstructured mesh and same
storm-induced external and boundary forcing, we evaluated
these models for their dynamical responses in inundation
simulations, particularly on the impact of current-wave
interaction on coastal inundation in Scituate.

[7] This paper summarizes the intermodel comparison
results of ADCIRC, FVCOM, and SELFE for the 2005 and
2007 extratropical storm simulations. The remaining sec-
tions are organized as follows. Section 2 describes the three
models and the numerical experiments, including the grid
configuration, external forcing, and initial/boundary condi-
tions. Section 3 presents the simulation results for experi-
ments with (a) only tidal forcing and (b) cases without and
with inclusion of current-wave interaction. Section 4 dis-
cusses the intermodel comparisons with a focus on the
three surface wave models. Section 5 summarizes the
conclusions.

2. Model Descriptions and Numerical Designs

2.1. Descriptions of ADCIRC, FVCOM, and SELFE

[8] The intermodel comparisons for extratropical storm
inundation experiments were made using ADCIRC,
FVCOM, and SELFE. These three models utilize unstruc-
tured triangular meshes to resolve the complex irregular
coastal geometry and wet-dry treatment methods to simu-
late the coastal inundation process [Luettich and Westerink,
2004; Dietrich et al., 2012; Chen et al., 2006b, 2007;
Zhang et al., 2011]. ADCIRC and FVCOM were run by the
model development teams [ADCIRC—University of Notre
Dame (UND); FVCOM—UMassD-WHOI], while SELFE
was run by Virginia Institute of Marine Science (VIMS)
with technical support from the Oregon Health and Science
University. A brief description of these three models is
given below.
2.1.1. ADCIRC

[9] ADCIRC is the ADvanced CIRCulation Model devel-
oped originally by Luettich and Westerink [2004] and
upgraded through a team effort with the University of North
Carolina (UNC), UND, and collaborators [Dawson et al.,
2006; Dietrich et al., 2012]. The ADICRC model used in
this study is the two-dimensional (2-D) depth-integrated

version called ADCIRC-2DDI (hereafter referred to as
‘‘ADCIRC’’), which is a continuous-Galerkin finite-element
code that solves the depth-integrated shallow water equa-
tions on an unstructured triangular mesh [Luettich and
Westerink, 2004; Dawson et al., 2006] with parameteriza-
tion of bottom friction by the Manning formulation. The
ADCIRC model has been coupled with the unstructured-
mesh version of the Simulating WAves Nearshore (SWAN)
model so that both models run on the same unstructured
mesh and on the same computational cores [Zijlema, 2010;
Dietrich et al., 2012]. SWAN is advanced forward in time
using a first-order implicit time stepping algorithm [Zijlema,
2010]. Coupling is achieved through the transfer of wave
radiation stress from SWAN to ADCIRC, and water levels,
currents, and frictional roughness lengths from ADCIRC to
SWAN. This transfer occurs at intervals of 600 s, which is
equivalent to the SWAN time step used for these simula-
tions. The resulting ADCIRC/SWAN model is aimed at
simulating accurately and efficiently the propagation of
wind waves, tides, and storm surge from deep water into the
nearshore. This coupled model has been used in simulating
the complex response characteristics of hurricane-induced
storm surges in the Northern Gulf of Mexico [Tanaka et al.,
2011; Dietrich et al., 2012] and for the design and analysis
of the Flood Risk Reduction System for southeastern Loui-
siana [USACE, 2009; FEMA, 2009]. The model validation
for storm surge simulation was carried out for recent hurri-
canes including Katrina (2005), Rita (2005), Gustav (2008),
and Ike (2008) [Bunya et al., 2010; Dietrich et al., 2010,
2011; Kennedy et al., 2011; Hope et al., 2013].].
2.1.2. FVCOM

[10] FVCOM is the three-dimensional (3-D) primitive
equation unstructured grid, general terrain-following coor-
dinate, Finite-Volume Community Ocean Model developed
originally by Chen et al. [2003] and upgraded by the
UMassD-WHOI model development team [Chen et al.,
2006a, 2006b, 2007, 2008; Lai et al., 2010a, 2010b; Huang
et al., 2008; Chen et al., 2011]. FVCOM utilizes the
second-order approximate finite-volume discrete algorithm
with an integral form of governing equations over momen-
tum and tracer control volumes in the terrain-following
generalized vertical coordinate system with either Carte-
sian coordinates [Chen et al., 2003] or spherical coordi-
nates [Chen et al., 2006b, 2011], and is integrated with
time with options of a mode-split solver in which external
and internal modes are advanced in tandem at different
time steps [Chen et al., 2003] and a semi-implicit solver
with a single time step inversely proportional to water cur-
rent magnitude [Chen et al., 2009; Chen et al., 2011; Lai
et al., 2010a, 2010b, Gao et al., 2011]. Mixing in this
model is parameterized by the Mellor-Yamada level 2.5
turbulence submodel as a default setup [Mellor and
Yamada, 1982] with options of the General Turbulence
Model (GOTM) [Burchard, 2002] in the vertical and the
Smagorinsky turbulent parameterization [Smagorinsky,
1963] in the horizontal. The FVCOM used in this study is a
fully 3-D wave-current coupled version. The wave model
in FVCOM is SWAVE, an unstructured-grid version of
SWAN solved by a second-order approximate semi-
implicit finite-volume discrete method [Qi et al., 2009].
SWAVE is coupled with FVCOM through radiation stress
and surface stress in the momentum equations and the

CHEN ET AL.: EXTRATROPICAL STORM INUNDATION TESTBED

3



wave-current interaction functions in the bottom boundary
layer (BBL) [Wu et al., 2010]. The roughness used to calcu-
late the wind stress at the sea surface is based on formulae
given in Donelan et al. [1993]. The BBL code used in this
coupling was adopted from the code developed by Warner
et al. [2008] and converted to an unstructured-grid finite-
volume version using the FVCOM framework.
2.1.3. SELFE

[11] SELFE is the Semi-implicit Eulerian-Lagrangian
finite-element model developed originally by Zhang and
Baptista [2008] and modified and improved by many others
[Burla et al., 2010; Bertin et al., 2009; Brovchenko et al.,
2011]. SELFE utilizes a semi-implicit time stepping in con-
junction with a Eulerian-Lagrangian method (ELM) to treat
advection terms, with improvements in grid flexibility and
implementing a hybrid terrain-following topography coor-
dinates and higher-order discrete algorithms for elevation
[Zhang and Baptista, 2008]. The default numerical scheme
is second-order accurate in space and time, with options for
higher-order schemes. The SELFE used in this study is a
fully current-wave coupled 2-D vertically integrated ver-
sion. The surface wave model implemented into SELFE is
WWM [Roland, 2009]. WWM incorporates the framework
of residual distribution schemes [Abgrall, 2006] within a
hybrid fractional splitting method utilizing third-order Ulti-
mate Quickest schemes in spectral space, as also used by
Tolman [1992] in the Wave Watch III (WWIII) model, and
robust and accurate integration of the source terms based
on a multiple splitting technique using TVD-Runge Kutta
schemes for shallow water wave breaking and bottom fric-
tion, dynamic integration of the triad interaction source
term and semi-implicit integration of the deep water
physics. Coupling of WWM with SELFE was done through
the radiation stress formulations according to Longuet-Hig-
gins and Stewart [1964], the wave boundary layer (WBL)
based on the theory of Grant and Madsen [1979], surface
mixing following Craig and Banner [1994], and the
current-induced Doppler shift for waves [Komen et al.,
1996].

[12] In this testbed experiment, FVCOM was run with its
original 3-D setup, while ADCIRC and SELFE were run
using their 2-D depth averaged formulation. The intermo-
del comparisons were made using the vertically averaged
water transports and surface elevation. In ADCIRC and
SELFE, the bottom friction was parameterized using
Manning’s n formulation with the bottom stress �bx; �by

� �
given as a quadratic slip boundary condition in the form of

�bx; �by

� �
¼ �Cf U ; Vð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V 2

p
ð1Þ

where U and V are the x- and y-components of vertically
averaged velocity and Cf is the bottom drag coefficient
given as

Cf ¼
gn2

ffiffiffi
h3
p ð2Þ

where g is the gravitational constant, n is the Manning
roughness, and h is the total water column depth. In
ADCIRC, n was specified as a variable parameter with a
minimum value of 0.025 in open water and a maximum

value of 0.12 on land. In SELFE, n was specified as a con-
stant parameter of 0.08 inside the harbor and 0.01 outside
the harbor. In FVCOM, the bottom stress is also calculated
by a quadratic formula in the form of

�bx; �by

� �
¼ �Cd ub; vbð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

b þ v2
b

q
ð3Þ

where ub and vb are the x- and y-components of the bottom
velocity and Cd is the bottom drag coefficient that is deter-
mined by matching a logarithmic bottom layer to the model
at a height zb above the bottom, i.e.,

Cd ¼ max
�2

ln zb

zo

� �2 ; 0:0025

2
64

3
75; ð4Þ

where � is the von Karman constant and zo is the bottom
roughness parameter. In the Scituate Harbor where the
water depth is shallower than 40 m, zo¼ 0.003 m.

2.2. Design of Numerical Experiments

[13] The testbed site Scituate is a coastal lagoon in Mas-
sachusetts Bay with a width of 195 m (between two break-
waters) at the mouth opening eastward onto the inner shelf
(Figure 1). The water depth varies from �15 m over the
shelf to �5–6 m in the deeper regions of the harbor, with a
shallow and narrow connection to a wide area of wetland
and salt marsh to the south. In the NECOFS pilot experi-
ment, a subregional unstructured grid was created with a
horizontal resolution varying from �400–500 m over the
shelf to �10 m inside the harbor (Figure 2). In the vertical,
a total of 10 uniform �-layers were specified, with a verti-
cal resolution varying from 1.5 m over the shelf to 0.1 m or
less along the coast where the water depth is 1 m or
shallower.

[14] Numerical experiments were made for the May
2005 and April 2007 storm events. In 2005, two nor’easters
swept over the Massachusetts coast, the first during 5–10
May and the second during 24–27 May (Figure 3). The
NDBC buoy 44013 located �17 km NNE of Scituate in
Massachusetts Bay reported maximum wind speeds >15
m/s during this period. Both storms caused significant inun-
dation on the northern peninsula and at the southern end.
The testbed experiments were focused on the second event.
In 2007, a nor’easter occurred during 17–20 April. The
wind direction and intensity of this storm were similar to
the 24–27 May 2005 nor’easter event. The difference was
that during the 24–27 May, 2005 nor’easter, the maximum
wind lasted over high tide, while during 17–20 April, 2007,
the maximum wind occurred during low tide.

[15] The experiments were made by running the three
models with the same meteorological forcing and initial/
boundary conditions for the entire month of May 2005 and
April 2007, respectively. The surface wind and barometric
pressure forcing used to drive the models were taken from
hindcasts made with the NECOFS Gulf of Maine regional
mesoscale weather models (MM5 for 2005 and WRF for
2007); we assimilated all available NDBC and coastal
weather data in improve the mesoscale hindcasts. MM5 is
the fifth-generation NCAR/PSU nonhydrostatic, terrain-
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following, sigma-coordinate mesoscale weather model
developed jointly by the National Center for Atmospheric
Research (NCAR) and Pennsylvania State University
(PSU) [Dudhia et al., 2003]. WRF is the newer Weather
Research and Forecast model (with the same dynamics as
MM5) developed by the NCEP/NCAR [Skamarock and
Klemp, 2008] that we used to replace MM5 in NECOFS in
2006. The Scituate-FVCOM inundation model is nested
with the NECOFS regional Gulf of Maine FVCOM model
(GM-FVCOM). In this study, Scituate-FVCOM was spun
up 1 month before the testbed model experiment runs
started, and the model-predicted fields at the beginning of 1
May 2005 and 1 April 2007 were used as the initial condi-

tions for the three models. The open boundary forcing was
also provided by GM-FVCOM, which has the same grid
cells around the boundary zone of the Scituate-FVCOM
mesh. This forcing includes the real-time sea level eleva-
tion (with both tidal and subtidal components) at boundary
nodes and 3-D velocities in the centroid of boundary
triangles.

[16] To help us examine the role of current-wave interac-
tion in coastal inundation, we ran the three models for cases
without and with inclusion of waves for the 2005 and 2007
nor’easter experiments. The SWAN, SWAVE, and WWM
coupled with these three models were run with the same
wave parameters listed in Table 1. To evaluate the

Figure 2. Unstructured triangular grid of the Scituate-FVCOM inundation system (top left) that is
nested with the regional GM-FVCOM (bottom right). The top right figure is a zoomed view of the Mas-
sachusetts coast bounded by the red box shown in the GM-FVCOM grid. The blue dot is the location of
NDBC 44013. The bottom left figure is a zoomed view of the Scituate Harbor grid bounded by the red
box shown in the Scituate-FVCOM in the top-left figure.
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feedback effects of current-wave interaction to the surface
waves, we also compared the wave model results for the
cases without and with coupling to the hydrodynamic mod-
els. In the following sections, we define these four experi-
ments as follows: Experiment 1—the hydrodynamic model
run without inclusion of waves; Experiment 2—the wave-
current coupled model run; Experiment 3—the surface
wave simulation without coupling to the hydrodynamic
model; and Experiment 4—the surface wave simulation
with inclusion of wave-current interaction. For brevity, we
will use the term ‘‘with waves’’ to indicate simulations
made with wave-current interaction included, and the term
‘‘without waves’’ to mean simulations made without cou-
pling the wave and hydrodynamic models.

3. Simulation Results

3.1. Tidal Simulation

[17] In 2010, the Taunton WFO installed a tide gauge in
Scituate Harbor to help improve their inundation forecast-
ing. To validate the three models, we selected May 2010 as
the test period to compare model-predicted tides with
observations. This is a prerequisite for an inundation model
since large inundation usually occurs at or near high tide.
For the tidal simulation, each model was forced at the open

boundary by elevation time series constructed using the
five major tidal constituents (M2, N2, S2, O1, and K1). The
tidal constants (amplitude and phase) for these constituents
were computed for the 1–31 May 2010 period using the
MATLAB harmonic analysis toolbox T_Tide [Pawlowicz
et al., 2002]. The resulting model elevation time series
were then analyzed using T_Tide and the tidal constants
compared.

[18] For the same boundary tidal forcing, the three mod-
els provided similar accuracy for tidal elevation (Tables 2
and 3), with a root-mean-square (RMS) error of � 8.0 cm
over the entire month. The difference with observations
occurred mainly in tidal phases, which is believed to be
due to the bottom friction parameterization used in the
models. ADCIRC and SELFE were run using their 2-D ver-
sion in which bottom friction was parameterized by the
Manning formulation with different Manning n coeffi-
cients, while FVCOM was run using its 3-D version in
which bottom friction was parameterized through a bottom
log-profile viscous layer. Since sea level inside Scituate
Harbor changed almost simultaneously, however, the dif-
ferent bottom friction formulations used in the three models
showed little influence on model performance in simulating
tidal phase, and the model-computed errors were in or close
to uncertainties of observations.

3.2. Inundation

[19] To examine the impact of current-wave interaction
on storm-induced inundation, we compared the total inun-
dated areas predicted by ADCIRC, FVCOM, and SELFE
for the cases without waves and with waves. In general,
more severe flooding occurred in the 2005 event than in the
2007 event, and in the cases with waves than without
waves. In the 2005 event, for the case without waves, the
three models agreed well on the spatial distributions of the

Figure 3. Observed (red) and modeled (blue) wind velocity vectors at the 10 m height at NDBC 44013
over 1–31 May 2005 and 1–30 April 2007, respectively. The blue shaded region marks the period during
which the nor’easter was defined.

Table 1. Wave Parameters Used in SWAN, SWAVE, and WWM

Direction Full Circle

Direction bins (number) 36
Frequency bins (number) 24
Lowest discrete frequency (Hz) 0.05
Highest discrete frequency (Hz) 0.5
Bottom friction formulation Jonswap
Minimum water depth for wet/dry treatment (m) 0.05
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flooded area. Protected by seawalls along the coast, no
overtopping appeared along the coast outside of Scituate
Harbor. Inside the harbor, three major flooded areas were
predicted: (1) on the northern peninsula, where water
flowed onto the back side through a narrow channel, (2) the
western coast of the southern peninsula connected to the
mouth of the harbor, and (3) at the southern end, where
water entered the large wetland and marsh area through
two narrow tidal creeks (Figure 4, top). Adding wave-
current interaction resulted in relatively larger flooding at
the southern end and slightly more flooded area on the
northern peninsula (Figure 4, bottom). On the northern pen-
insula, ADCIRC- and FVCOM-predicted flooded areas
were very similar for the case without waves, while
FVCOM and SELFE were similar for the case with waves.
The three model-predicted flooded areas on the western
coast of the southern peninsula remained the same for both
cases without and with waves. At the southern end, after
wave-current interaction was included, ADCIRC showed
that the flooded area was significantly enlarged, but not in
FVCOM and SELFE.

[20] In the 2007 event, for the cases without waves, no
significant flooding occurred on the northern peninsula and
at the southern end except on the western coast of the
southern peninsula (Figure 5, top). In that area, no signifi-
cant difference was shown in the inundation areas predicted
by the three models. When waves were included, all three
models predicted flooding on the northern peninsula and at
the southern end (Figure 5, bottom). At the southern end,
the flooded area predicted was larger in FVCOM than in
ADCIRC and SELFE.

[21] The three models all suggest that inundation was
greater in the 2005 event than in the 2007 event, independ-
ent of whether or not wave-current interaction was
included. In the 2005 event, the strong northeasterly wind
appeared around 14:00 GMT 24 May and lasted until
00:00 GMT 26 May. The largest inundation occurred at
high tide around 5:00 GMT 25 May. In the 2007 event, the
wind was strongest around 18:00–22:00 GMT 17 April
during the ebb tidal phase. Although the wind had the same
amplitude as that observed in May 2005 nor’easter, no sig-
nificant inundation occurred during the strongest wind pe-

riod due to the canceling effect of the wind-induced
onshore transport by the tidal-induced offshore transport
through the harbor entrance. Although small, the maximum
inundation occurred around 4:00 GMT at high tide on May
28, at which time the wind was about 5 m/s lower than the
maximum wind. Inside Scituate Harbor, with the inclusion
of current-wave interaction, the significant wave heights
predicted by the three models were in phase as the tidal ele-
vation. This is the reason why adding wave-current interac-
tion resulted in more significant inundation. In the 2005
event, the strongest wind co-occurred with high tide, result-
ing in significant flooding without the need for including
wave-current interaction. In the 2007 event, the strongest
wind occurred during the ebb tide so that adding wave-
current interaction played a critical role in producing sig-
nificant flooding.

[22] Using the same mesh configuration, surface forcing,
and initial/boundary conditions, the difference was still no-
ticeable in the inundation results for ADCIRC, FVCOM,
and SELFE (Table 4). In the 2005 event, the model-
predicted inundation area was largest in FVCOM and
smallest in SELFE. The difference was 0.03 km2 between
FVCOM and ADCIRC (15% larger in FVCOM), 0.06 km2

between FVCOM and SELFE (35% larger in FVCOM),
and 0.03 km2 between ADCIRC and SELFE (18% larger in
ADCIRC) for the cases without waves. Although the wave
models implemented in the three models were different, the
contributions of current-wave interaction to the flooded
area were similar in the 2005 event. The inundation area
was enlarged by 0.03 km2 for FVCOM (13% larger) and
SELFE (18% larger) and by 0.05 km2 for ADCIRC (25%
larger). In the 2007 event, the flooded areas predicted by
the three models were very close for the cases without
waves, while the flooded area was enlarged by 0.07 km2 in
FVCOM (64% larger) and ADCIRC (70% larger), and 0.04
km2 in SELFE (40% larger) with wave-current interaction.
The enlarged rates of FVCOM and ADCIRC were the
same. Since no quantitative measurements were made of
the flooded area, we were not able to evaluate the accuracy
of the three models. We believe that the small intermodel
differences were caused by the different algorithms and cri-
terions used to estimate the flooding/drying process and the

Table 2. Comparison for Observed and Computed Tidal Amplitudes at the Scituate Tide Gauge

OBS (m) ADCIRC (m) Difference (m) FVCOM (m) Difference (m) SELFE (m) Difference (m)

M2 1.32 6 0.03 1.24 6 0.02 �0.08 1.24 6 0.02 �0.08 1.24 6 0.03 �0.08
N2 0.25 6 0.03 0.28 6 0.02 0.03 0.28 6 0.02 0.03 0.28 6 0.03 0.03
S2 0.17 6 0.03 0.19 6 0.02 0.02 0.19 6 0.02 0.02 0.19 6 0.02 0.02
O1 0.12 6 0.01 0.11 6 0.01 �0.01 0.11 6 0.01 �0.01 0.11 6 0.01 �0.01
K1 0.14 6 0.01 0.13 6 0.01 �0.01 0.13 6 0.01 �0.01 0.13 6 0.01 �0.01

Table 3. Comparison for Observed and Computed Tidal Phases at the Scituate Tide Gauge

OBS (�) ADCIRC (�) Difference (�) FVCOM (�) Difference (�) SELFE (�) Difference (�)

M2 103.46 6 1.36 101.62 6 0.97 �1.84 101.66 6 0.94 �1.80 101.97 6 1.05 �1.49
N2 68.62 6 8.03 69.58 6 4.57 0.96 69.51 6 4.66 0.89 69.87 6 4.52 1.25
S2 141.30 6 12.83 152.58 6 7.09 11.28 152.81 6 6.81 11.51 153.17 6 6.99 11.87
O1 187.13 6 5.63 183.49 6 2.27 �3.64 183.56 6 2.11 �3.57 183.59 6 2.70 �3.54
K1 198.77 6 4.64 193.53 6 1.98 �5.24 193.48 6 2.00 �5.29 193.93 6 2.20 �4.84
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parameterizations used for bottom friction parameteriza-
tions used in these 3-D and 2-D models.

3.3. Water Currents

[23] The three models predicted similar spatial and tem-
poral patterns of water currents in both cases without and
with wave-current interaction. Examples are shown in Fig-
ures 6 and 7 for snapshots of the vertically averaged current
taken at 05:00 GMT 25 May 2005 and 04:00 GMT 18
April 2007, respectively. In both 2005 and 2007 events, for
the cases without wave-current interaction, the models
show that the northeasterly wind produced a relatively
strong southward along-shelf current over the shelf, a weak
anticyclonic separation eddy in the harbor entrance behind
the easternmost breakwater, and the same order of magni-
tude weakly cyclonic circulation inside the harbor. When
wave-current interaction was included, the along-shelf cur-

rent was strongly intensified over the shelf. On the shelf off
the northern peninsula, the current turned toward the coast,
creating a stagnation point. This onshore current
diverged at the coast, creating strong northwestward and

Figure 4. The total flooded areas predicted by ADCIRC (left), FVCOM (middle), and SELFE (right)
for the cases without (top) and with (bottom) wave-current interaction during the May 2005 nor’easter
storm event.

Table 4. Total Maximum Inundated Areas Predicted by ADCIRC,
FVCOM, and SELFE for the 2005 and 2007 Nor’easters

Case
ADCIRC

(km2)
FVCOM

(km2)
SELFE
(km2)

May 2005 Nor’easter
No Waves 0.20 0.23 0.17
With Waves 0.25 0.26 0.20

April 2007 Nor’easter
No Waves 0.10 0.11 0.10
With Waves 0.17 0.18 0.14
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southward along-shelf currents around that area and
around the harbor entrance and along the southern penin-
sula. The anticyclonic eddy in the harbor entrance was also
intensified, with speeds up to the same order of magnitude
as the currents over the shelf. The currents within the har-
bor remained relatively weak. All three models consistently
showed that wave-current interaction could not only
significantly enhance the current but also change the
current direction over the shelf and entrance. This result
is consistent with Signell and List [1997], who found
that wave-current interaction could increase (reduce) the
cross-shelf (along-shelf) storm-driven transport as a
result of an increase in the effective bottom friction in
Massachusetts Bay.

[24] The differences among ADCIRC, FVCOM, and
SELFE were evident mainly in the current magnitudes over
the shelf. In both the cases without and with waves,

SELFE-predicted currents (shown in Figures 6 and 7) were
relatively weaker than those predicted by ADCIRC and
FVCOM. For the cases without waves, in the 2005 event,
FVCOM predicted a relatively strong flow along the shelf
off the northern peninsula. This current was visible in
ADCIRC, even though its magnitude was relatively weak.
ADCIRC showed a relatively stronger current than
FVCOM on the southern shelf. The same difference was
found in the 2007 event, and the currents on the northern
shelf showed an opposite direction between ADCIRC and
FVCOM. For the case with wave-current interaction,
ADCIRC- and FVCOM-predicted currents were very simi-
lar, particularly for the eddy intensification in the entrance
mouth and divergent flow on the northern shelf and intensi-
fied flow on the southern shelf.

[25] It should be pointed out here that FVCOM was
run as a 3-D model through nesting to the regional

Figure 5. The total flooded areas predicted by ADCIRC (left), FVCOM (middle), and SELFE (right)
for the cases without (top) and with (bottom) wave-current interaction during the April 2007 nor’easter
storm event.
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GM-FVCOM with volume and mass conservation between
the two domains. The nesting boundary conditions included
both sea level elevation and water velocity. ADCIRC and
SELFE were forced by the boundary conditions provided
by FVCOM. Since the velocity is placed at nodes in
ADCIRC, at the centroids in FVCOM, and at the midpoint
of the side lines of a triangle in SELFE, an interpolation
approach was required to apply the FVCOM velocity
nested boundary into ADCIRC and SELFE. This treatment
could affect the current simulation results over the shelf. It
is likely that the boundary issues did not influence the sim-
ulations of water level inside the harbor (see the discussion
in the following sections).

3.4. Water Elevation and Flux Time Series

[26] We have compared time series of the water eleva-
tion at selected sites A-F and the water flux through trans-

ects a1-a2, b1-b2, and c1-c2 (see Figure 1) for both the
2005 and 2007 events (Figures 8 and 9). We have also
compared the vertically averaged currents at sites A-F.
However, since the three models compute velocity at dif-
ferent points in the triangular element, direct comparison of
the model velocities at a single point required spatial inter-
polation, thus making the results sensitive to the interpola-
tion method. To avoid confusion, we have not included
here direct velocity comparisons.

[27] At sites A–E, in both cases without and with wave-
current interaction, the only significant intermodel differen-
ces in water elevation were found in the timing of drying.
In the 2005 event, for example, at site A, the water level
difference at 05:00 GMT 25 May was 0.5 cm between
ADCIRC and FVCOM, and 3.5 cm between ADCIRC and
SELFE. At site E (the entrance to the southern end), the
difference at the same time was 0.8 cm between ADCIRC

Figure 6. Snapshots of vertically averaged current vectors and inundation areas (red) predicted by
ADCIRC (left), FVCOM (middle), and SELFE (right) at 05:00 GMT 25 May 2005 for the cases without
(top) and with (bottom) wave-current interaction.
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and FVCOM and 1.1 cm between ADCIRC and SELFE.
The different timing of drying shown among ADCIRC,
FVCOM, and SEFLE is not surprising, since the three mod-
els use different criterions for determining wet/dry grid
cells.

[28] A big difference appeared at site F on the northern
peninsula. The land height at that point is 1.84 m. In the
2005 event, for the case without wave-current interaction,
ADCIRC and FVCOM showed that site F was dry until
04:00 GMT 25 May and flooded over the water height of
�20 cm at 05:00 GMT 25 May. This flooding event also
appeared in the SELFE result, but the water height was
only �4 cm. All three models showed a second event at
05:00 GMT 26 May, at which time the ADCIRC- and
FVCOM-predicted sea levels were almost the same, but
SELFE was �11 cm lower. ADCIRC and FVCOM showed
that adding wave-current interaction did not change the

timing of flooding but did enlarge the flooded area with a
rise of water level of �20 cm. This feature was also evident
in SELFE, but the water level at 05:00 GMT was lower
than ADCIRC and FVCOM. In the 2007 event, all three
models were consistent for the case without wave-current
interaction; no flooding occurred at site F! For the case
with wave-current interaction, ADCIRC and FVCOM pre-
dicted two inundation events: one at 05:00 GMT 18 April
and another at 06:00 GMT 19 April, while SELFE
remained ‘‘dry’’ at site F. For this case, ADCIRC-predicted
flooding water level was �24 cm higher than FVCOM.

[29] Transects a1-a2, b1-b2, and c1-c2 were made
across the harbor entrance, the west coast of the northern
peninsula, and the water passages entering the southern
end (Figure 1). On transect a1-a2, the water flux predicted
by the three models varied with the dominant M2 tidal
cycle (Figure 10). For the 2005 event, the flux difference

Figure 7. Snapshots of vertically averaged current vectors and inundation areas (red) predicted by
ADCIRC (left), FVCOM (middle), and SELFE (right) at 04:00 GMT 18 April2007 for the cases without
(top) and with (bottom) wave-current interaction.
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between the cases without and with waves [of order 40
m3/s (�20%) or less] occurred primarily during the strong
wind period (see Figure 3). The area of this transect is
�830 m2, so that the maximum inflow increased by
current-wave interaction during the storm was just �5 cm/
s, occurring at maximum flood tide. One common feature
we learned using these three models is that wave-current

interaction significantly enhanced the anticyclonic eddy at
the entrance of the harbor. Because of the existence of this
eddy, wave-current interaction could increase the inflow
during flood tide and the outflow during ebb tide. For this
reason, coastal flooding inside the harbor was not consid-
erably enlarged in the case with wave-current interaction
in the 2005 event.

Figure 8. Comparisons of the time series of water elevation predicted by ADCIRC, FVCOM, and
SELFE at sites A–F during 24–27 May 2005 for the cases without (left) and with (right) wave-current
interaction.
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[30] A similar difference was also detected in the 2007
event. Wave-current interaction enhanced the net flux into
the harbor during flood tide and caused the inundation on
the northern peninsula and enlarged the flooded areas in the
southern end. The maximum inflow flux difference
between the cases with and without waves was �45 m3/s
(�23%) for FVCOM, >50 m3/s (�25%) for ADCIRC, and
�15 m3/s (8%) for SELFE. In this case, FVCOM showed

the largest flooding at the southern end (Figure 5) and high-
est water level there (Figure 9) while ADCIRC showed the
highest water level at site F, indicating that wave-current
interaction can cause the transport pattern within the harbor
to differ between the three models, in addition to the crite-
rion for wetting and drying employed by the three models.

[31] On transect b1-b2 on the western coast of the north-
ern peninsula, both ADCIRC and FVCOM showed two

Figure 9. Comparisons of the time series of water elevation predicted by ADCIRC, FVCOM, and
SELFE at sites A–F during 17–20 April 2007 for the cases without (left) and with (right) wave-current
interaction. SELFE remained dry at F, no water elevation was represented.
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peaks in the onshore water transport early on 25 and 26
May 2005 (Figure 10), consistent with the elevation time
series shown in Figure 8. These two peaks were higher
when wave-current interaction was included. Unlike
ADCIRC and FVCOM, SELFE-predicted flux on this tran-
sect was about double that of ADCIRC and FVCOM and
varied periodically with the tidal cycle. In both cases with-

out and with waves, the SELFE inflow and outflow were in
the same order and timing as the maximum inflow fluxes
on 25 and 26 May 2005 and occurred earlier than ADCIRC
and FVCOM. The SELFE-predicted flux on transect b1-b2
seems to be consistent with the water elevation time series
at site F (Figure 8), where minimal flooding appeared
around 05:00 GMT 25 May but more significant flooding

Figure 10. The water flux through transects a1-a2, b1-b2, and c1-c2 estimated by ADCIRC, FVCOM,
and SELFE during 24–27 May 2005 and 17–20 April 2007 for the cases without (left) and with (right)
wave-current interaction. Positive: inflow and negative: outflow. The black vertical line indicated when
maximum flooding occurred.
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occurred around 05:00 GMT 26 May. Similar features
were also found in the 2007 event. For the case without
waves, the ADCIRC- and FVCOM-predicted fluxes were
similar and very small, while the SELFE-predicted flux
was roughly 1 order of magnitude larger, with slightly
larger outflow than inflow. For the case with waves, the
ADCIRC-predicted flux during the flooding periods in
early 18 and 19 April were much larger than FVCOM and
SELFE.

[32] On transect c1-c2, the three models showed that the
timing of flooding was a few hours later than those found
on transect b1-b2. For both 2005 and 2007 events, the
southward flux predicted by FVCOM was about double
that predicted by ADCIRC and SELFE. The three models

showed similar phases during the flood tide but not during
the ebb tide. The maximum peak of the outflow flux pre-
dicted by SELFE was a few hours delayed after the peak
predicted by FVCOM and ADCIRC.

[33] We note here that it was difficult to compare quanti-
tatively the volume fluxes calculated through these trans-
ects by the three models, since the results were sensitive to
the algorithms used to calculate the flux. FVCOM uses a
finite-volume algorithm designed to ensure flux conserva-
tion in a closed system, while ADCIRC and SELFE used
algorithms that required interpolation of the velocity field.
Applying these algorithms in regions of large currents with
complex patterns and horizontal shears (e.g., the harbor en-
trance eddy) could lead to differing flux estimates.

Figure 11. Snapshots of the significant wave height predicted by SWAN, SWAVE, and WWM at
05:00 GMT 25 May 2005 for the cases without (top) and with (bottom) wave-current interaction.
Vectors : wave direction.
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4. Discussion

[34] The intermodel comparisons described above sug-
gest that the primary difference in the performance of the
three models occurred in the case with the inclusion of
wave-current interaction. In the case with the same forcing,
boundary/initial conditions, and grid configuration, we
believe that the difference was mainly caused by different
discrete algorithms used to solve the three wave models,
compute wave-current interaction, and use the wet-dry
point treatment for simulating inundation as well as differ-
ent bottom friction parameterizations. The water elevations
predicted by the three models were very close to each other
at wet points but differed considerably at flooding sites,

suggesting that for the given same grid, forcing and initial/
boundary conditions, the three models were all capable of
simulating the change in water level at points in the harbor
that were never dry. At flooding sites, however, since the
wet/dry point treatment algorithms and criterions imple-
mented in these models were different, with a certain level
of dependence on empirical methods, we should not expect
to see identical flooding predictions even through these
methods were all validated via field measurements in previ-
ous applications [e.g., Bunya et al., 2010; Chen et al.,
2007; Zhang et al., 2011].

[35] One question was raised regarding the differences
found in the case with wave-current interaction: Did the
three models predict the same wave features in Scituate for

Figure 12. Snapshots of the significant wave height predicted by SWAN, SWAVE, and WWM at
04:00 GMT 18 April 2007 for the cases without (top) and with (bottom) wave-current interaction.
Vectors : wave direction.
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these two extratropical storms? If not, it suggests that these
differences could be due to different performances of
SWAN, SWAVE, and WWM (e.g., the algorithms used to
calculate radiation stress and bottom friction). To investi-
gate this question, we compared the spatial (snapshot) dis-
tributions and temporal (time series at sites) variation of
significant wave height and peak frequency predicted by

SWAN, SWAVE, and WWM for the 2005 and 2007
events.

[36] These simulations were conducted without and with
inclusion of wave-current interaction, with results shown in
Figures 11 and 12. For the case without coupling with
ADCIRC, FVCOM, and SELFE, SWAN, SWAVE, and
WWM showed that the significant wave height was high

Figure 13. Comparisons of the time series of significant wave height predicted by ADCIRC (red),
FVCOM (blue), and SELFE (black) at sites A-F during 24–27 May 2005 for the cases without (left) and
with (right) wave-current interaction.
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over the shelf and low inside the harbor. After entering the
harbor, the waves spread out toward both sides of the coast,
resulting in relatively higher wave heights on the coast than
in the interior. This spatial pattern remained unchanged for
the case with wave-current interaction, except with an
increase in significant wave height inside the harbor. For
the case without wave-current interaction, the major differ-

ence was found near the coast along the inner shelf, where
WWM-predicted significant wave height showed a larger
cross-isobath gradient than SWAN and SWAVE. In addi-
tion, SWAN predicted a relatively higher significant wave
height around the southwestern coast, which did not appear
in SWAVE and WWM. For the case with inclusion of
current-wave interaction, inside the harbor, FVCOM/

Figure 14. Comparisons of the time series of significant wave height predicted by ADCIRC (red),
FVCOM (blue), and SELFE (black) at sites A-F during 17–20 April 2007 for the cases without (left) and
with (right) wave-current interaction.
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SWAVE showed a larger increase of the significant wave
height on both northern and southern coasts, while
ADCIRC/SWAN- and SELFE/WWM-predicted significant
wave height distributions were more uniform. These differ-
ences were likely due to the discrete algorithms used to
solve the wave models. SWAVE is solved using a second-
order accurate upwind finite-volume scheme, whereas
SWAN is solved using a first-order accurate finite-element
scheme and WWM using a second-order Eulerian-Langra-
gian finite-element scheme.

[37] The difference among the three models for wave
prediction can be seen in more detail in the time series of
the model-predicted significant wave height at sites A-F
(Figures 13 and 14). For the case without wave-current
interaction, SWAN- and SWAVE-predicted significant
wave heights were very similar at sites A, B, D, and F for
both the 2005 and 2007 events, while WWM-predicted sig-
nificant wave heights were �0.4 m higher than SWAN and
SWAVE at site A, the same as SWAN and SWAVE at site
B and site E, close to SWAVE at site C, and lower than
SWAN and SWAVE at site D. For the case with wave-
current interaction, all three models showed that the signifi-
cant wave height increased dramatically and also varied
with the M2 tidal cycle at most stations. Significant differ-
ences in the significant wave height were found at sites A,
C, and D. ADCIRC/SWAN and FVCOM/SWAVE, for
example, consistently showed a large variation of signifi-
cant wave height at site D, while the SELFE/WWM-pre-
dicted significant wave height was very low and did not
change much with time. These differences remained the
same for both the 2005 and 2007 events.

[38] The significant differences found in the wave simu-
lations in these three wave models help explain why the
model-predicted coastal inundation and water flux differed
in both space and time among ADCIRC/SWAN, FVCOM/
SWAVE, and SELFE/WWM for the case with wave-
current interaction.

5. Summary

[39] ADCIRC/SWAN, FVCOM/SWAVE, and SELFE/
WWM were evaluated for simulating extratropical storm-
induced coastal inundation in Scituate Harbor, MA, for the
late May 2005 and April 2007 Patriot’s Day nor’easters.
For the same unstructured grid, meteorological forcing, and
initial/boundary conditions, intermodel comparisons were
made for tidal elevation, surface waves, sea surface eleva-
tion, coastal inundation, currents, and volume transport.

[40] All three models showed similar accuracy in tidal
simulation and consistent dynamic responses to storm
winds in experiments conducted without and with wave-
current interaction. The three models also showed that
wave-current interaction could (1) change the current direc-
tion from the along-shelf direction to the onshore direction
over the northern shelf, enlarging the onshore water trans-
port and (2) intensify an anticyclonic separation eddy in the
harbor entrance and a cyclonic eddy in the harbor interior,
leading to an increased water transport into the harbor to-
ward the northern peninsula and the southern end and thus
enhance flooding in those areas. The testbed intermodel
comparisons suggest that major differences in the perform-
ance of the three models occurred for the case with the

inclusion of wave-current interaction. Under the same forc-
ing condition, the differences found in the wave simula-
tions in SWAN, SWAVE, and WWM explain to a certain
degree why the model-predicted coastal inundation and
water flux differed in both space and time among these
three models. The differences were also related to the dif-
ferent discrete algorithms used to solve the three wave
models, compute water-current interaction, use different
wet-dry point treatments to simulate inundation, and differ-
ent bottom friction parameterizations.

[41] It should be pointed out here that the intermodel
comparison described here was made with a focus on
dynamic responses of the models to storm-induced winds
and boundary forcing. Since there was the lack of direct
measurements of water elevation, significant wave height,
and inundation areas, the results could not be used to evalu-
ate the numerical accuracy of these models. Since the WFO
tide gauge was established inside Scituate Harbor in
December 2008, there was a full record of water elevation
measurements made during the 27 December 2010 nor’-
easter. With the same grid configuration, Beardsley et al.
(Coastal flooding in Scituate (MA): A FVCOM study of
the Dec. 27, 2010 nor’easter, submitted to Journal of Geo-
physical Research: Oceans, 2013) applied the Scituate
FVCOM inundation model to simulate the storm-induced
surge level and flooded area, which agreed reasonably well
with observations.
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