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[1] Observing system simulation experiments (OSSEs) were performed in Massachusetts
Bay for the design of optimal monitoring sites for dissolved oxygen (DO) measurements.
Experiments were carried out using the Ensemble Kalman Filter (EnKF) for data
assimilation with focus on initial and boundary perturbations. Running a well-validated
water quality model with a perturbed initial field of DO but “true” boundary forcing
conditions, the model is capable of restoring DO back to the true state without data
assimilation over a recovery time scale of about a month. Since DO in Massachusetts Bay
has a bay-wide correlation scale, placing a monitoring site of DO near the northern
boundary or at a location that has maximum correlation to the entire domain can shorten
the restoring time to a week. Running the model with perturbed boundary forcing without
data assimilation, the results show that the errors propagate into Massachusetts Bay
following the inflow from the northern boundary and spread southward to Cape Cod Bay
over a time scale of about a month. Using a DO monitoring site located near the northern
entrance, the data assimilation can efficiently control the error propagation and
prevent the model field from deviating from the true state. The model shows that the
inflow from the northern entrance, which is connected to the upstream Western
Maine Coastal Current, plays an important role in controlling the DO variation in
Massachusetts Bay, and the residence time of the bay controlled by this flow is about one
month. Understanding the upstream boundary-control nature of this system is critical for
optimal design of sampling strategies of water quality variables in this region.

Citation: Xue, P., C. Chen, and R. C. Beardsley (2012), Observing system simulation experiments of dissolved oxygen
monitoring in Massachusetts Bay, J. Geophys. Res., 117, C05014, doi:10.1029/2011JC007843.

1. Introduction

[2] Coastal ocean observing systems have been developed
dramatically as a component of the national Integrated
Ocean Observing System (IOOS) in recent years. A total of
eleven systems were established to serve the nation’s coastal
communities, with aims at monitoring and predicting the
ocean state for maritime operation safety, inundation and
ecosystem environment changes (such as water quality and
harmful algal blooms) [Intergovernmental Oceanographic
Commission, 2003]. Ocean prediction requires a model that
can incorporate observed data through data assimilation. A
reliable model prediction depends on (1) the accuracy of

external and internal forcing used to drive the model and (2)
time and space coverage of the observations. Since the
spatial coverage of monitoring is generally limited due to the
high costs of obtaining, operating, and maintaining obser-
vational equipment, an optimal design of observational data
sampling strategies can play a key role in ensuring the suc-
cess of an operational observing system.
[3] Observing System Simulation Experiments (OSSEs)

were introduced by Charney et al. [1969]. Arnold and Dey
[1986] gave a comprehensive review on OSSEs. This
method has been used to evaluate sampling strategies
through assessing the impact of “hypothetical” observations
on improving model abilities for weather forecasting with
data assimilation. This method has been adopted to evaluate
the design of a mooring array in the tropic Atlantic Ocean
[Hackert et al., 1998]; test the feasibility of a mooring sys-
tem for the meridional overturning circulation in the North
Atlantic Ocean [Hirschi et al., 2003]; infer sampling strate-
gies of the Argo array in the Indian Ocean [Schiller et al.,
2004]; sample the water properties with optimal interpola-
tion in the Mediterranean Sea [Raicich, 2006]; and examine
the design of a proposed array of instrumented moorings in
the Indian Ocean [Ballabrera-Poy et al., 2007]. Recently,
OSSEs have also been used in coastal oceans to optimize
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fixed observational assets [Frolov et al., 2008], constrain
sensor placement from noisy ocean measurements [Yang
et al., 2010], and assess a monitoring network in a coastal
region with multiscale processes [Xue et al., 2011].
[4] There have been a few OSSEs conducted in ocean

ecosystem studies. McGillicuddy et al. [2001] used nudging
and an adjoint method to derive the “true state” and assessed
the broad-scale plankton survey over Georges Bank with
object analysis methods. Their twin experiment results sug-
gested that most of the model inaccuracy (up to �50%)
could be caused by simple mapping errors due to incomplete
spatial sampling. Lin et al. [2010] used the so-called vari-
ance quadtree (QVT) algorithm to optimize plankton survey
design in the Gulf of Maine and found that the sampling
locations determined by the QVT algorithm were signifi-
cantly better than simple random sampling. In the coastal
ocean, the time and spatial variability of the ecosystem is
highly correlated to the dominant physical processes (e.g.,
periodic tidal variation, wind fluctuation, turbulence mix-
ing, and river discharges, etc.) and kinematics of advection
connected to the regional water movement. Since most of
the coastal currents flow following local isobaths, the water
transport, which is one of the basic processes controlling
the spatial distribution of biological variables, could be

highly correlated in a region. Are there some optimal sites
that have a regional-wide influence on ecosystem variabil-
ity in a coastal region? Could we use OSSEs to determine
these sites and use them to design optimal monitoring
strategies for ecosystem prediction in coastal bays and
gulfs? To our knowledge, these questions have not been
well examined yet.
[5] In this paper, we attempt to address these two ques-

tions using OSSEs with Ensemble Kalman Filters for dis-
solved oxygen (DO) monitoring in Massachusetts Bay
(Figure 1). For simplicity, the term “Mass Bay” is used in
this paper to refer to the entire semi-enclosed embayment
system formed by Massachusetts Bay (MB) (between Cape
Ann and Race Point) and Cape Cod Bay (CCB) (south of
Race Point). The abbreviations “MB” and “CCB” are used
to refer to the separate bays as needed. Mass Bay is a semi-
enclosed coastal embayment system with a counter-clock-
wise circulation driven by an inflow of the Western Maine
Coastal Current (WMCC) and Merrimack River plume
water through the north passage around Cape Ann and an
outflow through the south passage near the tip of Cape Cod
[Bigelow, 1927; Geyer et al., 1992]. The ecosystem of this
bay has changed dramatically over the last few decades, with
frequent outbreaks of harmful algal blooms [Anderson et al.,

Figure 1. Bathymetry of Massachusetts Bay, Cape Cod Bay and adjacent western Gulf of Maine region.
Sites a–e and a2 denote sampling locations selected for experiments (see the text). For simplicity, the term
“Mass Bay” is used in this paper to refer to the whole semi-enclosed embayment system formed by Mas-
sachusetts Bay (between Cape Ann and Race Point) and Cape Cod Bay (south of Race Point). The abbre-
viations “MB” and “CCB” are used in the text to refer to the separate bays as needed.
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2005, 2007]; the long-term shift of phytoplankton species;
and increased (decreased) occurrences of the spring (fall)
blooms [Hunt et al., 2010] and dramatic decrease of
anadromous fish (e.g., blueback herring) [Reback et al.,
2004].
[6] In Mass Bay, DO is considered one of the primary

state variables for water quality assessment due to its
importance for the sustainability of an ecosystem. In the
late 1980s, the Massachusetts Water Resources Authority
(MWRA) began a program to move the Boston area
sewage effluent outfall from Boston Harbor to a deep-
water discharge system 14 km offshore in MB. As part of
this program, the MWRA started in 1992 a water quality-
monitoring program in Mass Bay which has been continued
to the present time [Signell et al., 2000]. The observed data
have been used to validate the water quality models for the
annual assessment of the water quality conditions in Mass
Bay [HydroQual Inc., 2003; Jiang and Zhou, 2004; Tian
et al., 2009, 2010; Chen et al., 2010; P. Xue et al.,
Mechanism studies of seasonal variability of dissolved
oxygen in Massachusetts Bay: A multiscale FVCOM/UG-
RCA application, submitted to Journal of Marine Systems,
2012]. Recently, a fully coupled physical and water quality
model system (called FVCOM/UG-RCA) has been devel-
oped, which has successfully simulated the spatial and
temporal variability in the DO concentration data collected
in the last 16 years from 1995 to 2010 (Xue et al., sub-
mitted manuscript, 2012).
[7] Taking advantage of the MWRA monitoring program

and the above tested coupled modeling system, we have
selected Mass Bay as a pilot OSSE study area for the
design of optimal sampling strategies for DO monitoring.
By conducting twin experiments with an ensemble of per-
turbed initial fields and boundary conditions, we have
examined the memory time scale of the Mass Bay system
to initial perturbations, evaluated the influences of bound-
ary uncertainties on model performance for DO simulation,
tested the model convergence rates toward the true states
with data assimilation of DO measurement data at moni-
toring sites proposed based on different hypotheses, and
consequently, derived optimal data sampling strategies in
this region.
[8] In coastal water quality modeling, the simulation/

forecasting errors arise primarily from two sources: (1)
model errors due to incomplete and/or insufficient reso-
lution of the dominant physical and biochemical pro-
cesses in the true system and (2) errors due to inaccurate
initial and boundary conditions, even if a “perfect” model
exists. Our research objective in this work is focused
specifically on the second source, with use of OSSEs to
help design of optimal field sampling under initial and
boundary-induced errors.
[9] The remaining part of this paper is organized as fol-

lows. In section 2, the coupled physical-biogeochemical
model and design of the data assimilation experiments are
described. In sections 3–5, the twin experiments for initial
and boundary perturbations with proposed monitoring sites
are carried out and results are presented, respectively. In
section 6, a correlation analysis is conducted to examine the
bay-scale influences of DO measurements at proposed
optimal monitoring sites and in section 7, a discussion is
given on the residence time of DO and influence of different

physical processes on the bay-scale DO assimilation.
Finally, conclusions are summarized in section 8.

2. EnKF and Experiment Design

2.1. The Ensemble Kalman Filter

[10] The OSSEs were carried out using the Ensemble
Kalman Filter (EnKF) data assimilation approach [Evensen,
2003, 2004; Chen et al., 2009; Xue et al., 2011]. The EnKF
is a low rank, error subspace method of the classic Kalman
Filter [Kalman, 1960] with simple conceptual formulation;
model-independent implementation without the need of a
backward adjoint model; ensemble size-determined afford-
able computational requirements and fully nonlinear error
evolution without tangent linear approximation. This
method was described in detail in Evensen [2003] and a brief
description is given here.
[11] The EnKF operation follows three steps: (1) run an

ensemble of forecast models and represent error statistics
using the ensemble of model states, (2) create an ensemble
of observations with corresponding to each forecast model
member, and (3) update each ensemble member as an anal-
ysis solution with EnKF. For step 1, given an ensemble of
model forecasts X f = {xj

f} where j = 1, 2, 3…..N and N is the
ensemble size, the forecast error covariance (P f) can be
defined as

Pf ¼ X f � X f
� �

X f � X f
� �T

; ð1Þ

where the superscript “f ” represents the forecast value, the
overbar denotes mean value and T is the mathematical sign
for matrix transpose. For step 2, the ensemble of observa-
tions corresponding to forecast model members is defined as

yj ¼ yþ ɛj
� �

; ð2Þ

where y is a vector containing real observation data values,
ɛj is a vector of estimated observation error scale satisfying
ɛɛT ¼ R , where R is the estimated observational error
covariance. For step 3, the analysis solution for each
ensemble member can be determined by

xaj ¼ xfj þ K yj � Hxfj
� �

; j ¼ 1::::N ; ð3Þ

where K is the Kalman Gain defined as

K ¼ Pf HT HPf HT þ R
� ��1

; ð4Þ

xj
a denotes the analysis value for the jth ensemble model run
and H is an observational operator that projects the model
data onto the observational points. Consequently, the mean
value of X a ¼ fxaj g is considered as the best estimation of
the true state. As ensemble size N → ∞, the posterior error

covariance Pa ¼ Xa � X a
� �

Xa � X a
� �T

converges to the
traditional KF error covariance analysis equation
Pa = Pf � KHPf.

2.2. The Coupled Mass Bay FVCOM/UG-RCA Model

[12] In this study, the forecast model used for the OSSEs
EnKF data assimilation is UG-RCA: an unstructured-grid,
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finite-volume version of the Row-Column Advance (RCA)
water quality model developed by the UMASSD FVCOM
development team [Chen et al., 2010; Xue et al., submitted
manuscript, 2012]. RCA was developed by HydroQual Inc.
and Normandeau Associates [1995] and HydroQual Inc.
[2003]. It consists of 26 water quality state variables
including three phytoplankton assemblages (spring, summer
and fall groups), four nutrients (ammonia, nitrate/nitrite,
phosphate and dissolved silica), four organic phosphorus
forms, four organic nitrogen pools, six organic carbon pools
(four labile and refractory dissolved and particulate forms
plus the reactive and exudates components), biogenic silica,
dissolved and aqueous oxygen and total active metal. RCA
was converted to the unstructured-grid finite-volume version
under the FVCOM framework [Chen et al., 2003, 2006a,
2006b] and coupled with the Mass Bay FVCOM to establish
the Mass Bay eutrophication model system for the DO
assessment application.
[13] Both Mass Bay FVCOM and UG-RCA are config-

ured with a non-overlapped triangular mesh, with a hori-
zontal resolution varying from 0.3 to 0.5 km inside Boston
Harbor to 9.0 km off the coast (Figure 2). These two models
use the same hybrid vertical coordinate [Chen et al., 2006b]
with 30 vertical layers. Mass Bay FVCOM is driven by the
atmospheric forcing (winds, surface heat flux/shortwave
irradiance, precipitation minus evaporation), freshwater dis-
charge from rivers and nested boundary forcing output from

the regional Gulf of Maine domain FVCOM (hereafter
referred to as GOM FVCOM). UG-RCA is a subdomain
model within Mass Bay FVCOM and driven by 3-D cur-
rents, temperature, salinity and mixing parameters output
from Mass Bay FVCOM and also winds, solar irradiance,
and nutrient and carbon loadings from point (e.g., the sew-
age effluent outfall) and non-point sources (e.g., ground-
water) and rivers. The coupled MB-FVCOM/UG-RCA
model has been validated using field measurement data of
water temperature, salinity, currents, nutrients, chl-a and DO
concentrations taken from 1995 to 2010 [Tian et al., 2009,
2010; Zhao et al., 2011; Xue et al., submitted manuscript,
2012].

2.3. Design of OSSEs

[14] The OSSEs were made for DO concentration through
twin experiments. The DO concentration in Mass Bay is
dominated by seasonal and spatial varying modes: highest
levels in March–April and lowest levels in October and
varying more significant in the southern bay than in the
northern bay (Xue et al., submitted manuscript, 2012). For
example, DO in October 1999 dropped to the lowest con-
centration measured in other Octobers during the 1995–2010
period [Libby et al., 2007]. Since low DO is an indicator of
increased ecosystem stress and we expect the observing
system to be more accurate during periods of low DO, we
selected October 1–31, 1999 for the experimental period to
examine how EnKF could help design of optimal sampling
strategy for the seasonal low DO period in Mass Bay.
[15] The OSSEs were conducted using twin experiments.

First, the standard hindcast simulation was considered as the
“nature run” and served as a proxy for the “real nature.” The
model outputs of “nature run” are treated as the “true state.”
Second, pseudo observations are generated by extracting
the synthetic observational data of DO at hypothetical
monitoring sites from the “true state.” The observational
errors were presented by adding normally distributed ran-
dom noise with a standard deviation of 0.1 mg/L. Third, the
“forecast state” was defined as the model simulated field
predicted by re-running the model with perturbed initial or
boundary conditions. Hypothetical monitoring plans (sam-
pling locations and sampling frequencies) were then proposed
and quantified by the EnKF data assimilation experiments. By
comparing EnKF assimilation results with different hypo-
thetical monitoring plans, the sensitivity of the model con-
vergence rate toward the “true state” under different sampling
strategies can be quantified. The optimal sampling strategies
were consequently derived from these hypothetical monitor-
ing plans to meet the requirement for improving the model
forecast capability within an acceptable range of model
uncertainty.
[16] The results of OSSEs are described by defining them

as different experiments. Experiment#1 (Ex#1) refers to the
model run with an initial DO perturbation, in which the
“inaccurate” guess of the DO initial field was represented
by the climatological mean of the DO concentration on
October 1 averaged from the 16-year (1995–2010) DO fields
simulated by UG-RCA. This experiment was designed to
examine the memory time scale of Mass Bay to an initial DO
perturbation. The question is: if the UG-RCA model error is
purely introduced by an inaccurate initial condition, can the
UG-RCA model run with correct surface external forcing

Figure 2. Unstructured grid of the UG-RCA water quality
model nested with the Mass Bay FVCOM. The blue line
shows the locations of the nodes along the nesting boundary.
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and boundary conditions restore the DO field back to the
true state?
[17] Experiment#2 (Ex#2) refers to the model runs with

the EnKF assimilation of observations from different
“hypothetical” monitoring sites for the initial perturbation
case. The EnKF was performed with 16 ensemble members
and initial fields of these members were specified using the
UG-RCA-simulated October 1, 1995–2010 fields. The
ensemble size was determined to ensure that EnKF captured
the main characteristics of the true error covariance. A
detailed discussion on this topic was given in Chen et al.
[2009] and Xue et al. [2011].
[18] Experiment#3 (Ex#3) refers to the model runs driven

by perturbed boundary conditions. The perturbed DO
boundary conditions were specified using the 1995–2010
climatologically averaged DO concentrations on the
boundary. For given correct initial conditions and surface
external forcing, this experiment was designed to examine if
UG-RCA is capable of reproducing the true state solution in
the interior of Mass Bay after boundary perturbation. If not,
what level of influence could the boundary perturbation
produce and how errors enter and spread in Mass Bay?
[19] Experiment#4 (Ex#4) refers to the model runs with

the EnKF assimilation of observations from different hypo-
thetical monitoring sites for the boundary perturbation case.
This experiment was made to evaluate various hypothetical
sampling plans in controlling the boundary errors and pre-
venting the model fields from deviating from the true state.
In this case, 16 ensemble members were constructed using
the DO boundary conditions for the 1995–2010 water
quality simulations, respectively.
[20] Experiment#5 (Ex#5) refers to the model run with

EnKF data assimilation for the case with both initial and
boundary perturbations. The same analysis conducted in
Ex#2 and Ex#4 was repeated in this experiment. In addition,
by comparing model performances without and with EnKF
data assimilation, this experiment demonstrated the potential
of EnKF for improving the reliability for the water quality
forecast for Mass Bay.
[21] The correlation scale and flow pattern in Mass Bay

were also examined to help understand the physical pro-
cesses that are relevant to the selection of optimal monitor-
ing sites. An averaged correlation map was created for the
DO concentration that can be used to guide the selection of
optimal monitoring sites and the subtidal monthly mean flow
provides the information about the temporal and spatial
scales of water movement in Mass Bay.

3. Twin Experiments With an Initial Perturbation

3.1. Ex#1 Results

[22] To use the data assimilation to optimize a monitoring
plan, the first question that needs to be answer is “what if
there is no data assimilation implemented”? In addition to
the surface forcing and inputs from local rivers and
groundwater sources, the circulation in Mass Bay is signif-
icantly influenced by the inflow on the northern boundary
and the outflow on the southern boundary. A question raised
here is whether or not the initial errors could remain in the
bay in such a flow-through advection dominant system and
this question is answered by Ex#1. Without data assimila-
tion, Ex#1 shows that after an initial perturbation, the DO

field did converge toward the true state after 30 days
(Figure 3). The DO concentration in the perturbed initial
field was significantly higher than the true state. The error
was �1.2 mg/L in the northern and central regions of MB
and �0.6 mg/L in the southern part of CCB (Figure 3, day
0). The error was reduced rapidly with time in the northern
and central MB regions, but slowly in CCB. After 7 days,
the error dropped to 0.15 mg/L near the northern entrance
but it remained little changed in CCB (Figure 3, day 7).
After two weeks, the error was down to �0.15 mg/L in
northern MB but still up to �0.45 mg/L in the area west of
Race Point (Figure 3, day 14). After 30 days, the model-
predicted field converged back to the same spatial pattern of
the true state within an uncertainty error of 0.15–0.3 mg/L
near the southwestern coastal area of MB and CCB.
[23] Ex#1’s results suggest that under correct forcing and

boundary condition, the DO field in Mass Bay had a “self-
restoration” nature over a time scale of a month after the
initial perturbation was added. The error-reduction pattern
shown in Figure 3 illustrates that the restoration of the DO
field after initial perturbation is more related to the northern
boundary inflow and counter-clockwise circulation in the
bay rather than local biogeochemical processes. If the latter
were dominant, then the error-reduction pattern should be
reversed, since the initial error was lowest (Figure 3, day 0)
in the southern bay and the local biogeochemical processes
have a stronger influence on DO variation in the southern
bay than in the northern bay (Xue et al., submitted manu-
script, 2012).

3.2. Ex#2 Results

[24] Although the DO field has a self-restoration nature
from the initial perturbation, Ex#2 results show that imple-
menting monitoring sites in Mass Bay could significantly
shorten the restoration time scale. Five cases were consid-
ered in Ex#2, in which five monitoring locations (indicated
as sites a, b, c, d and e in Figure 1) were proposed. A
hypothetical mooring was deployed at site a near the
northern entrance of the inflow in case I; at site b in the
nearshore northern MB region in case II; at site c in the deep
region of the central MB in case III; at site d in the north-
western nearshore area of CCB in case IV; and at site e in the
center of CCB in case V, respectively. For each case, the
“measurement” was made at a daily sampling frequency and
30 levels in the vertical (defined as the model vertical
resolution).
[25] All five case results show that the EnKF data assim-

ilation at proposed sites can significantly accelerate the
convergence rate toward the true state. For case I, for
example, over just about 3 days, the error decreased from
initially �1.2 mg/L al to �0.15 mg/L or less near the
northern boundary, and to 0.15–0.3 mg/L in the rest of the
bay region, except near the mouth of CCB where the error
remained at a higher value of �0.3 mg/L–0.45 mg/L
(Figure 4, days 0 and 3). After a week, except in a very small
region just west of Race Point, the error in Mass Bay
dropped to a value of �0.15 mg/L or less (Figure 4, day 7).
With a 10-day assimilation, the model-computed DO field
over the entire Mass Bay converged back to the true state
(Figure 4, day 10) with an error uncertainty of �0.05 mg/L
or less (Figure 5). This time scale is about two times shorter
than the DO self-restoration scale found in Ex#1.
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[26] Ex#2 indicates that the convergence rate varies for
different proposed monitoring sites. The normalized root-
mean-square (RMS) errors of the DO concentration over 10-
day assimilations for all five cases are shown in Figure 5 with
comparison to the case without EnKF data assimilation.

Deploying a mooring at sites a, b, or c in the northern half of
MB showed better performance than at sites d or e in CCB. In
cases I–III, 85% of the initial error was filtered out over the
first two assimilation cycles and only 5% error remained after
7-day assimilations. In cases IV and V, the initial error

Figure 3. The distributions of (left) the “true” DO concentration, (middle) the simulated vertically aver-
aged DO concentration, and (right) their difference at day 0, 7, 14 and 30 for Ex#1.
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showed similar drop rates as those in cases I–III during the
first two assimilation cycles, but about 10% error remained
afterwards, a level similar to that found in the case without
data assimilation.

[27] Both Ex#1 and Ex#2 imply that the DO concentration
in Mass Bay is significantly influenced by the advection
process associated with the inflow on the northern boundary.
For an initial perturbation case, if only a single mooring is

Figure 4. The distributions of (left) the “true” DO concentration, (middle) the analysis vertically aver-
aged DO concentration, and (right) their difference at day 0, 3, 7 and 10 in site a for Ex#2.
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deployed and only daily sampling is conducted, the northern
or central MB could be optimal locations for DO sampling.

4. Twin Experiments With Boundary
Perturbations

[28] In addition to external forcing and initial conditions,
the DO simulation in Mass Bay is also controlled by
boundary conditions. To investigate the influence of the
uncertainty of a boundary prescription on model perfor-
mance, we conducted Ex#3 and Ex#4 with perturbed
boundary conditions and examine the propagation of the
boundary-induced error in time through the model domain.
The perturbed boundary condition was constructed by add-
ing a perturbation that is determined by the interannual
variation scale of DO at the boundary during October from
1995 to 2010 to the true 1999 boundary condition.

4.1. Ex#3 Results

[29] Ex#3 results demonstrate that without data assimila-
tion, the traditional approach of using climatology for the
boundary condition is not workable. Figure 6 shows snap-
shots of DO distribution of the true state, the forecast state
and their differences on days 3, 7, 14 and 30. It is clear that
the boundary errors entered Mass Bay along with the inflow
on the northern boundary and then gradually spread south-
ward to cover the entire bay. During the first 3 days, the
intrusion of the boundary-induced errors was noticeable near
the northern boundary, and then rapidly spread over most
of MB in the following 4 days, with an error level of 0.3–
0.45 mg/L. The error entered CCB after two weeks and at
the same time the error level in the northern and central MB
regions increased to a level of �0.6–0.9 mg/L (Figure 6,
day 14). Over 30 days, the error occupied nearly the entire
Mass Bay, with a vertically averaged error level of�0.9mg/L
in MB and �0.45 mg/L in CCB. As a result, the forecast
state started deviating from the true state in the northern bay

region and then this deviation extended to the entire bay. In
this case, the model simulation failed!

4.2. Ex#4 Results

[30] Ex#4 was made for the same five cases as described
in Ex#2. Suggested by the time evolution pattern of error
spreading shown in Ex#3, a straightforward design is to set
up a monitoring site in the main pathway of the inflow and
use the EnKF data assimilation to control or prevent the
error spreading from the northern boundary area. In case I,
the model run with the EnKF assimilation of daily measured
DO data at site a succeeded in controlling boundary-induced
error spreading and preventing the DO field inside Mass Bay
from deviating from the true state (Figure 7). In this case, the
error inside Mass Bay remained at a level of 0.10 mg/L or
less and the perturbation errors were confined within a nar-
row band near the boundary at all times during the 30-day
model run. This result suggests that it is useful to deploy a
monitoring site at the entrance of the inflow near the open
boundary where the error source is located.
[31] Sites b–e were selected to examine the sensitivity of

data assimilation performance with comparison to site a. For
the case with only one mooring site deployed, the assimila-
tion performance is the best at site a near the northern
entrance of the inflow and the worst at site e in the center of
CCB (Figure 8). For the site e case, it is apparent that data
assimilation was not able to make any correction in the first
11 days until the perturbation reached this sampling site,
during which the normalized RMS error increased to a level
of 60% of the total error (defined as the RMS error value
(�0.9 mg/L) on the 30th day for Ex#3). The EnKF started to
function after 11 days, and the RMS errors dropped rapidly
to �25% of the total error during the next 5 assimilation
days and then remained at this error level afterwards to the
end of the simulation. Although site d was better than site e,
the remaining error after 18-day assimilation was at the same
level as at site e.

Figure 5. Changes of the bay-averaged RMS errors (normalized) of the DO concentration with time in
the first 30 days for Ex#1 (black) and Ex#2 with selections of sampling sites a, b, c, d and e. Sampling
in each case of Ex#2 was conducted on a daily basis.
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4.3. Experiments With Two Monitoring Sites

[32] Examining the error distribution near the open
boundary for the case with monitoring at site a, we found
that the location of largest perturbation error shown in

Figure 7 appeared to oscillate back and forth between the
northern entrance and southern exit of MB. The largest
error was located near the southern exit on day 7, shifted
northward on day 14, and then drifted back to the

Figure 6. The distributions of (left) the “true” DO concentration, (middle) the simulated vertically aver-
aged DO concentration, and (right) their difference at day 0, 7, 14 and 30 for Ex#3.
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southern exit on day 30. This variation motivated us to
test the monitoring plan with two monitoring sites: one at
site a on the northern entrance boundary and another at
site a2 on the southern outflow boundary. It turned out

that adding the second mooring site a2 was able to cor-
rect local-scale error near the southern boundary and
succeed in limiting the error below 10% of the total
error.

Assimilation

Figure 7. The distributions of the “true” (left) DO concentration, and the analysis (middle) vertically
averaged DO concentration and their difference (right) at day 0, 3, 7 and 10 in case I for Ex#4.
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4.4. Sampling Frequencies

[33] Ex#4 was conducted with a daily sampling strategy.
Do the results of Ex#4 change for the case with different
sampling frequencies? To address this question, we repeated
the case I run of Ex#4 with a sampling interval of 2, 3 and 7
days, respectively. The results suggest that the convergence

rate increased and residual error decreased with an increase
in sampling frequency (Figure 9). For example, the moving-
averaged RMS error after 30-day assimilation remained at a
level of 13% of the total error for the daily sampling case,
but at a level of �30%, 20% and 17% for the cases with a
sampling frequency of 7, 3 and 2 days, respectively. There is

Figure 8. Change of the domain-averaged RMS errors (normalized) of the DO concentration with time
in the first 30 days for Ex#3 (black) and Ex#4 with selections of sampling sites a, b, c, d and e and Ex#5.
Sampling in each case of Ex#4 and Ex#5 was conducted on a daily basis.

Figure 9. Time series of the bay-averaged RMS errors (normalized) of the DO concentration in the first
30 days for case I in Ex#4 with selections of sampling frequencies of 1, 2, 3 and 7 days.
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clear that when an optimal monitoring site is determined,
increasing the sampling frequency can be helpful to keep the
model error to a minimum. This result can also help us
determine the sampling frequency needed to meet the
requirement for minimum error in a forecast operation.

5. Twin Experiments With Initial and Boundary
Perturbations

[34] Both Ex#2 and Ex#4 indicate that deploying a mon-
itoring site near the northern boundary can either efficiently
filter out an initial perturbation or control the boundary error,
respectively. A question raised here is whether or not the
EnKF data assimilation is still able to retain the same per-
formance when the model runs under the condition with
both initial and boundary perturbations at the same time.
Ex#5 was designed to address this question by running the
data assimilation experiment with the initial perturbation
field specified for Ex#2 and boundary perturbation condi-
tions specified for Ex#4.
[35] For the initial perturbation case discussed in section 3,

the model has a “self-restoration” nature with a restoration
time scale of a month. Ex#5 results show that without the
EnKF data assimilation, the normalized RMS error decreased
with time in the first 7 days and then gradually increased
during the remaining simulation days (Figure 10). On the 7th
day, the RMS error value dropped to a level of 65% of the
initial error and then increased back to a level of 80% by day
30. In comparison with the results of Ex#1 and Ex#3, in the
Ex#5 DO started to restore back to the true state after the
initial perturbation like Ex#3 at the beginning. As the influ-
ence of the boundary error increased, the restoration stopped
and then the error gradually grew.

[36] When monitoring is added at site a on the northern
boundary, Ex#5 results show that even with both initial and
boundary perturbations, the EnKF data assimilation with
observations at that site was capable of restoring the DO
field back to the “true state” with an error level of 20% or
less of the total initial error (Figure 10). In this case, the fast
convergence occurs in the first 4 days.

6. Bay Correlation Scale and Spatial Variance
Pattern of DO

[37] The OSSEs results for both initial and boundary per-
turbation cases show that in addition to site a near the
northern boundary, sites b and c show similar convergence
rates, even though they are far away from the entrance of the
inflow. This fact implies that Mass Bay may have a large
spatial correlation scale for DO. A correlation analysis was
made to address this question.
[38] Defining Di as the averaged correlation coefficient of

DO at model node i to the entire computational domain, we
have

Di ¼ 1

M

XM
k¼1

Corr i; kð Þ; ð5Þ

where Corr (i, k) is the correlation coefficient of DO for the
ith and kth model nodes and M is the total number of the
model nodes. Calculating Di at each mode node from 16
initial fields of DO that were used for an ensemble model
run, we created a bay-scale correlation map for Mass Bay
(Figure 11). The correlation coefficient of DO is 0.75 or
higher in the most region of Mass Bay except the area near
the southern open boundary. Sites b and c are located in the

Figure 10. The time change of the bay-averaged RMS errors (normalized) of the DO concentration in the
first 30 days for simulation and assimilation cases in Ex#5. Sampling in the assimilation case was con-
ducted on a daily basis.
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area with a maximum bay-scale correlation scale of >0.95.
This explains why the EnKF data assimilation with obser-
vations at these two sites shows the same level of success as
with observations at just site a and better convergence rate
and lower residual error than for sites d and e.
[39] The importance of the bay-scale correlation in adjust-

ing the forecast field to the true state can be viewed alterna-
tively using a simple example described in equation (3).
Consider a case in which only a single-layer observation was
made. Defining that si is the standard deviation of the forecast
value at model node i, equation (3) can be rewritten in the
form of

xa ¼ xf þ a ⋅ Corr i; jð Þ ⋅ si; ð6Þ

where a is a constant. The mathematical procedure to derive
equation (6) is given in Appendix A. For a given si, the
solution with EnKF depends on the correlation coefficient

Corr (i, k). If Corr (i, k) is zero, it means that no adjustment is
made. Under a recoverable system, the convergence toward
the true state is fastest as Corr (i, k) reaches 1.
[40] Our analysis is consistent with approaches that use

covariance analysis to quantify system variability [Lermusiaux,
2001] and determine optimal sampling sites from the
eigenvalue decomposition of its covariance matrix [Willcox,
2006], which were recommended in previous OSSEs
[Yildirim et al., 2009; Yang et al., 2010]. Yang et al. [2010]
recommended the proper orthogonal decomposition EOF-
based approach to select optimal locations for sensor place-
ment. This approach is sound for a regional ocean in which
physical variables can be represented by a few dominant
EOF modes. Xue et al. (submitted manuscript, 2012) made
an EOF analysis of DO in Mass Bay and found that the first
EOF mode accounted for 86.4% of the total variance cal-
culated from 16 year-simulated DO fields. The analysis was
repeated in this study for the initial 16-ensemble DO fields

Figure 11. Distributions of the bay-wide averaged correlation coefficients calculated using the initial 16
ensemble DO fields.
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and the results are the same. The spatial distribution of the
first EOF mode of DO shown in Figure 12 is very similar to
the bay-scale correlation map shown in Figure 11. Sites b
and c are located in the regions where the extreme covari-
ance signal are, which are in agreement with the EOF-based
sensor placement strategies.
[41] Xue et al. [2011] conducted OSSEs in Nantucket

Sound and found that the use of the EOF approach to
design an optimal location of sensor placement needs to be
used with caution in a coastal system that features multi-
scale processes. In Mass Bay, the DO field is strongly
correlated over a bay-wide scale; the EOF-based sensor
placement method could be an alternative sampling strategy
for EnKF data assimilation. The fact that site a shows the
best for both initial and boundary perturbation cases sug-
gests that the EnKF used in this study could not only help
us determine an optimal location of sensor placement but

could also help us understand the dynamics controlling this
coastal system.

7. Discussion

[42] For the initial perturbation case, the DO field in Mass
Bay shows a self-restorative nature with a restoration time
scale of a month. This restoration time is determined by the
residence time of this bay system. During the OSSEs
period, the monthly vertically averaged subtidal currents
were controlled by the inflow from the northern boundary
(Figure 13). This flow was separated into three branches:
(1) an anti-cyclonic eddy-like flow on the south of Cape
Ann, (2) a southward cyclonic flow, and (3) a weak west-
ward flow toward Boston Harbor. The second branch flow
bifurcated north of Cape Cod: one flowing southward
toward the eastern coast of Cape Cod and another rotating

Figure 12. Distributions of the first dominant EOF spatial mode of the DO concentration calculated
using the initial 16 ensemble DO fields.
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clockwise to form an anti-cyclonic eddy. CCB is charac-
terized by two weak eddy-like flows: cyclonic on the
eastern side and anti-cyclonic on the western side. This
circulation pattern indicates that the residence time in Mass
Bay varied in space, which was longer in CCB and near the
western coastal region in MB where weak flows are
located. The residence time was also longer in the eddy
zone with retention mechanisms. By releasing particles and
passive tracers near the northern boundary, we have esti-
mated a residence time of Mass Bay during the OSSEs
period. It was approximately equal to the advection time
scale in an averaged range of 15–30 days. This provides an
explanation of the shelf-restoration time scale observed in
the OSSEs for the initial perturbation problem.
[43] Our twin experiments were made under a “perfect

model” assumption. In OSSEs, experiments under this
assumption is often called “identical” twin experiments,
which allow us to focus exclusively on examining how the
sole initial- and boundary-induced errors affect the model

performance and how one could control these errors with
data assimilation. Under the “perfect” model assumption,
our experiments showed that the model can converge back
to the “true state” with assimilation from only 1�2 moni-
toring sites. In such a case, the data assimilation can accu-
rately estimate the model error covariance and thus is
capable of correcting the entire model state based on the
model-data mismatch at a few sampling locations. These
results would be “optimistic” compared to realistic data
assimilation operations in which the convergence rate could
be more affected by model internal errors [Orrell et al.,
2001], and generally more observations need to be assimi-
lated to correct model errors. This issue is addressed in our
studies on the model error-induced forecasting uncertainty
using so-called “fraternal” twin experiments. Since it is not
directly related to our focus in this paper, we did not include
discussion of this case here.
[44] It should be pointed out that our OSSEs were only

conducted in October - a period with minimum DO. The

Figure 13. The MB-FVCOM predicted monthly averaged vertical-averaged subtidal currents for
October 1999.
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analysis suggests that under initial and boundary perturba-
tions, selecting an optimal location of sensor placement near
the inflow boundary could efficiently either filter the initial
perturbation errors or prevent error intrusion from the
boundary to the interior. Our current study provides a testing
strategy to design the optimal monitoring locations in Mass
Bay. Since physical processes vary with season, such OSSEs
should be carried out for other months, too.

8. Conclusions

[45] OSSEs were performed in Mass Bay to investigate
different sampling strategies in designing optimal moni-
toring sites for DO. Experiments were carried out using
the UG-RCA water quality model with EnKF assimilation,
with focus on initial and boundary perturbation problems.
For an initial perturbation problem, the model results show
that the DO field in Mass Bay is able to restore back to
the true state over the residence time scale of a month.
Deploying a single monitoring site either near the northern
inflow boundary or at maximum bay-wide correlation
areas can efficiently filter the error and shorten the con-
vergence time scale to the true state. For a boundary per-
turbation problem, the model results show that the
boundary error enters the interior following the subtidal
flow and spreads over the entire bay with a residence time
scale of a month. Without data assimilation with field
measurement data, there is no mechanism that can drive
the DO field back to the true state. Deploying a monitor-
ing site near the northern inflow boundary can efficiently
control the error within the boundary zone and keep the
DO field in the interior close to the true state. Alterna-
tively, placing a monitoring site in the bay-wide correla-
tion areas could also restore the perturbed DO field toward
the true state, although it leads to the relatively larger
residual error than the near-boundary monitoring. Adding
an additional monitoring site at the outflow could signifi-
cantly reduce the residual error after the data assimilation.
The convergence rate toward the true state depends on
sampling frequencies. When an optimal monitoring site
has been determined, increasing sampling frequency could
be helpful to keep the model error to a minimum. The
model suggests that as a result of the complex circulation
pattern the residence time in Mass Bay varies in space and
time within a range of 15–30 days.
[46] It should be pointed out here that our OSSEs were

only focused on the initial and boundary perturbation pro-
blems. DO in Mass Bay is controlled by the surface flux
through reaeration, bottom flux through sediment oxygen
demand (SOD) and biogeochemical processes of oxidation of
organic matters, nitrification and photosynthesis-respiration
of phytoplankton. In addition to the photosynthesis-
respiration process, the growth of phytoplankton is also
controlled by uptake of dissolved inorganic nutrients
(including ammonium NH4

+, nitrate NO3
� and nitrite NO2

�,
phosphate PO4

3� and dissolved silica (e.g., Si(OH)4). The loss
of phytoplankton is transformed into organic matter through
“grazing,”mortality and exudation. The nutrient regeneration
is produced by either remineralization of organic matter into
inorganic nutrients in the water column or diagenesis after
settling down into sediment and re-enter the water column

through the sediment-water interface. The success of UG-
RCA in reproducing the spatial and temporal variability of
the DO field in Mass Bay for the 1995–2010 period (Xue et
al., submitted manuscript, 2012) has demonstrated that this
model has captured the dominant physical and geochemical
processes that control the DO variation in Mass Bay.
Focusing the OSSEs on initial and boundary perturbation
problems will be aimed at designing optimal DO monitoring
sites for converting UG-RCA into forecast operation. For
such perturbation problems, the OSSEs results suggest that
the horizontal advection from the northern inflow boundary,
which is connected to the upstream Western Maine Coastal
Current, plays an important role in DO variation. Under-
standing the upstream boundary-control nature of this sys-
tem is critical in designing an optimal monitoring network in
Mass Bay.

Appendix A: Derivation of Equation (6)

[47] Consider a 2-D case in which the DO measurement
was made only in a layer in the vertical. Defining xf as the
model forecast vector with a length ofM (M = number of the
nodes where DO is computed in the model) and xa is the
analysis vector after the EnKF assimilation, the Kalman
Filter analysis equation can be written as

xa ¼ x f þ Pf HT

HPf HT þ R
y� Hx f
� �

; ðA1Þ

where definitions of all other variables are the same as those
used in the text. Assuming the measurement was made at a
specific model node j with no observation error (R = 0), then
the observation operator matrix H is simplified to a 1-D
vector given as H = [0 0 0 0 …0 1 0 0 0 0], where all are
zeros except at the jth element. In this case,

Hx f ¼ x f jð Þ; ðA2Þ

P fHT ¼ P f
j ¼ P f j; ið Þ; i ¼ 1 : M

� � ¼ Cov i; jð Þ; i ¼ 1 : M ;

ðA3Þ

HPf HT ¼ Pf j; jð Þ ¼ Cov j; jð Þ ¼ s2
j ; ðA4Þ

Cov i; jð Þ
s2
j

¼ Cov i; jð Þ
sj ⋅ si

⋅
si

sj
¼ Corr i; jð Þ ⋅ sj

si
: ðA5Þ

[48] Therefore, (equation A1) can be rewritten as

xa ið Þ ¼ x f ið Þ þ Corr i; jð Þ ⋅ si

sj
⋅ y� x f jð Þ� 	

; ðA6Þ

where i denotes the model node index from 1 to M; x f(i) and
xa(i) denote the forecast and KF analysis values at node i;
si
2 and sj

2 are variances for ensemble run values at nodes
i and j.
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[49] The error correction term [y � x f( j)] in equation (A6)
represents the observed model-data misfit at the observed
location j. This term is proportional to the standard deviation
of the forecast value at the observation location. For this
reason, we can simplify this term as a ⋅ sj, where a is a
constant. With this simplification, equation (A6) can be
rewritten as

xa ið Þ ¼ xf ið Þ þ a ⋅ Corr i; jð Þ ⋅ si: ðA7Þ
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