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[1] A sea ice model was developed by converting the Community Ice Code (CICE) into
an unstructured‐grid, finite‐volume version (named UG‐CICE). The governing equations
were discretized with flux forms over control volumes in the computational domain
configured with nonoverlapped triangular meshes in the horizontal and solved using a
second‐order accurate finite‐volume solver. Implementing UG‐CICE into the Arctic
Ocean finite‐volume community ocean model provides a new unstructured‐grid,
MPI‐parallelized model system to resolve the ice‐ocean interaction dynamics that
frequently occur over complex irregular coastal geometries and steep bottom slopes.
UG‐CICE was first validated for three benchmark test problems to ensure its capability of
repeating the ice dynamics features found in CICE and then for sea ice simulation in
the Arctic Ocean under climatologic forcing conditions. The model‐data comparison
results demonstrate that UG‐CICE is robust enough to simulate the seasonal variability of
the sea ice concentration, ice coverage, and ice drifting in the Arctic Ocean and adjacent
coastal regions.
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1. Introduction

[2] The Arctic Ocean, connected to the North Atlantic
Ocean through the Greenland Sea and Baffin Bay and to the
Pacific Ocean through Bering Strait, features both basin‐
and coastal scale ocean processes (Figure 1). Divided by the
Lomonosov Ridge, the Eurasia and Canadian Basins are
characterized by cyclonic gyres around steep topographic
slopes. The water depth over the slope changes abruptly
from a few hundred meters to several thousand meters over
a distance of a few kilometers. The Canadian Archipelago,
located north of mainland Canada and containing many
islands, is one of the largest coastal island complexes in the
world ocean. This Archipelago functions as a network for
the water exchange between the Arctic Ocean and the North
Atlantic Ocean [Kliem and Greenberg, 2003; Steiner et al.,
2004;Häkkinen and Proshutinsky, 2004] and the tidal energy
in Baffin Bay to the Arctic Basin [Kowalik and Proshutinsky,
1994; Chen et al., 2009]. Resolving coastal geometries with
numerous islands and narrow passages in the Archipelago
and steep bottom topography on the continental slope
and ridges has become a critical need for the Arctic Ocean

modeling [Proshutinsky et al., 2001, 2005; Proshutinsky
and Kowalik, 2007; Panteleev et al., 2007; Golubeva and
Platov, 2007].
[3] The Arctic Ocean unstructured‐grid, finite‐volume com-

munity ocean model (hereafter referred to as AO‐FVCOM)
has been developed with an aim to provide better resolution
of the complex geometry in this region [Chen et al., 2009,
Gao et al., 2010]. To simulate ice‐current interaction pro-
cesses, the Los Alamos Community Ice Code (CICE) was
converted into an unstructured‐grid, finite‐volume version
under the FVCOM framework (hereafter referred to as
UG‐CICE) and implemented into AO‐FVCOM. CICE is
governed by energy‐conserving thermodynamics equations
with four layers of ice and one layer of snow in each of five
ice categories [Hunke and Lipscomb, 2006], elastic‐viscous‐
plastic icemomentum equations [Hunke andDukowicz, 1997,
2002; Hunke, 2001], and energy‐based ridging schemes of
Thorndike et al. [1975], Hibler [1979], and Lipscomb et al.
[2007] as well as ice strength parameterizations given by
Rothrock [1975]. The original CICE was designed as a
module of the Community Climate System Model (CCSM)
to couple with the structured‐grid ocean model called the
Parallel Ocean Program (POP) [http://www.ccsm.ucar.edu/].
The realistic performance and accuracy of CICE has
encouraged its use as a community ice model which has been
implemented into other structured‐grid ocean models such
as MITgcm, HYCOM, and NEMO [Hunke and Lipscomb,
2006].
[4] Unlike the differential forms used in structured‐grid

finite difference models, UG‐CICE discretizes the integral
forms of the governing equations and solves them numeri-

1School for Marine Science and Technology, University of
Massachusetts Dartmouth, New Bedford, Massachusetts, USA.

2Marine Ecosystem and Environment Laboratory, College of Marine
Science, Shanghai Ocean University, Shanghai, China.

3Department of Physical Oceanography, Woods Hole Oceanographic
Institution, Woods Hole, Massachusetts, USA.

Copyright 2011 by the American Geophysical Union.
0148‐0227/11/2010JC006688

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, C00D04, doi:10.1029/2010JC006688, 2011

C00D04 1 of 15

http://dx.doi.org/10.1029/2010JC006688


cally by flux calculations over nonoverlapped triangular
meshes. This finite‐volume approach is better at guaran-
teeing mass conservation in both individual control volumes
and the entire computational domain [Chen et al., 2003, 2007;
Huang et al., 2008]. In view of this technical approach,
UG‐CICE combines the best attributes of finite difference
methods for simple discrete computational efficiency and
finite element methods for geometric flexibility. Because sea
ice processes play a major role in the Arctic Ocean and the
numerical algorithms used to solve UG‐CICE differ sig-
nificantly from CICE, validation experiments are needed
to demonstrate the capability and accuracy of UG‐CICE
to resolve the ice dynamics and kinematics in the Arctic
Ocean.
[5] This paper summarizes the validation experiment

results with the focus on comparisons with CICE for three
idealized benchmark test problems and with observational

data in an application to the Arctic Ocean. The rest of the
paper is organized as follows. The governing equations and
finite‐volume discrete algorithms of UG‐CICE are described
in section 2. The validation experiment results for the
benchmark test problems are presented and discussed in
section 3. The results of using the coupled UG‐CICE and
AO‐FVCOM to simulate the Arctic Ocean under climato-
logic forcing conditions are given in section 4. Some critical
issues in the ice model evaluation are discussed in section 5,
and then conclusions are summarized in section 6.

2. Governing Equations and Finite‐Volume
Discrete Algorithms of UG‐CICE

2.1. Governing Equations

[6] UG‐CICE uses the same governing equations as
CICE. UG‐CICE is coded for both spherical and Cartesian

Figure 1. Bathymetry and schematic of near‐surface and deep circulation in the Arctic region. Contour
lines are 50, 500, and 2000 m. Solid black arrows are the near‐surface circulation; dashed gray vectors are
the deep circulation. Redrawn following the schematic of the circulation of Proshutinsky et al. [2005].
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coordinates. For simplification, only the Cartesian coordi-
nate system is described. The full nonlinear ice momentum
equations are given as

m @u
@t þ m u @u

@x þ v @u
@y

� �
� mfv ¼ @�1j

@xj
� mg @H0

@x þ �ax þ �wx

m @v
@t þ m u @v

@x þ v @v
@y

� �
þ mfu ¼ @�2j

@xj
� mg @H0

@y þ �ay þ �wy

8><
>: ; ð1Þ

where m is the combined mass of ice and snow per unit area;
u and v are the x and y components of the ice velocity; f
is the Coriolis parameter; g is gravity; Ho is the sea surface
elevation; sij is the internal stress tensor with subscripts of 1,
2 and i, j (in a range from 1 to 2) representing x (noted as
“1”) and y (noted as “2”) components; (tax, tay) and (twx,
twy) are the x and y components of sea surface wind and
water stresses, respectively. The vector forms of these
stresses follow Connolley et al. [2004], which are formu-
lated as

~�a ¼ cCa�aj~uaj ~ua cos�þ k �~ua sin�ð Þ ð2Þ

~�w ¼ cCw�wj~uw �~uj ~uw �~uð Þ cos �þ~k � ~uw �~uð Þ sin �
j k

; ð3Þ

where c is the ice concentration ranging from 0 to 1;~u is the
surface velocity vector; C is the drag coefficient; r is the
density; and � and � are the air and water turning angles,
respectively. The subscripts “a” and “w” represent the “air”
and “water,” respectively.
[7] In the elastic‐viscous‐plastic (EVP) dynamics system

[Hunke and Dukowicz, 1997], sij is derived from the equa-
tion as

1

E

@�ij
@t

þ 1

2�
�ij þ � � �

4��
�kk	ij þ P

4�
	ij ¼ _2ij; ð4Þ

where E is the elastic parameter defined by Young’s mod-
ulus given as E = z/T; z is the bulk viscosity; T is a damping
timescale for elastic waves; h is the shear viscosity; P is the
ice strength; 2ij is the ice strain rate; k represents i or j; and
dij is the Kronecker function defined as dij = 1 for i = j and 0
for i ≠ j. 2ij has the form of

_2ij ¼ 1

2

@ui
@xj

þ @uj
@xi

� �
: ð5Þ

[8] P can be estimated with options of two empirical
formulas derived by Hibler [1979] or Rothrock [1975] and
Lipscomb et al. [2007]. From Hibler [1979],

P ¼ P*h exp �C* 1� cð Þ½ �; ð6Þ

where P* = 2.75 × 104 N/m2, h is the mean ice thickness,
and C* = 20 is an empirical constant. From Lipscomb et al.
[2007],

P ¼ Cf Cp

XNc

n¼1

�apnh
2
n þ

apn
kn

H2
min þ 2�Hmin þ 2�2

� �� 	
; ð7Þ

where Cf is an empirical parameter for frictional energy
dissipation; Cp = (g/2) (ri/rw)(rw − ri); ri is the ice density;

b = Rtot/Rnet > 1; Rtot =
PNc

n¼1
rn, rn is the ridging rate; Nc is the

total number of ice categories; n is the number of each
category from 1 to Nc, Rnet is the net rate of area loss for the
ice pack; apn is the thickness distribution of the ice partic-
ipating in ridging; hn is the ice thickness for the category n;
kn is the ratio of the mean ridge thickness to the thickness of
ridging ice; Hmin = 2hn; and l is an empirical e‐folding
scale.
[9] In the viscous‐plastic (VP) rheology, sij is a function

of the ice strain rate and strength by the constitutive law
[Hibler, 1979; Zhang and Hibler, 1997], which can be
computed using (4) under steady state conditions.
[10] The ice transport equation satisfies the conservation

law by which the thickness distribution function remains
unchanged following the ice current trajectory. Define that
ĝ(~x, h, t) is the thickness distribution function containing the
ice area, ice volume, snow volume, ice energy, snow energy
and area‐weighted surface temperature, the transport equa-
tion for ĝ can be written as the standard advection equation

@ĝ

@t
¼ �r � ĝ~uð Þ: ð8Þ

[11] In spherical coordinates, the x (eastward) and y
(northward) axes are defined as

x ¼ r cos8 �� �0ð Þ and y ¼ r 8� 80ð Þ; ð9Þ
where r is the earth’s radius; l is longitude; 8 is latitude, and
l0 and 80 are the reference longitude and latitude, respec-
tively. Following the coordinate module in FVCOM [Chen
et al., 2006], equations (1)–(8) can be easily converted into
the spherical coordinate system.

2.2. Discretization

[12] Following the FVCOM framework, equations (1)–(8)
are discretized in the horizontal using a set of nonoverlapped
unstructured triangular meshes that subdivide the model
domain. A triangle is composed of three nodes; a centroid
and three sides (Figure 2), on which u and v are placed at
centroids and scalar variables like ĝ are placed at nodes. u
and v at centroids are calculated based on the net flux
through the three sides of that triangle (called the momen-
tum control element: MCE), while scalar variables at each
node are determined by the net flux through the sections
linked to centroids and the middle point of the sideline in the
surrounding triangles (called the tracer control element: TCE).
[13] Integrating equations (1) and (4) over individual

MCE area gives

@u

@t
¼ � 1

W

I
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uvnds′þ
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W

fvdxdyþ 1

m

I
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��11dyþ �12dxð Þ
2
4
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3
5; ð10Þ
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@�1
@t

þ �1

2T
þ P

2T
¼ P

2TD
DD; ð12Þ

@�2
@t

þ e2�2

2T
¼ P

2TD
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@�12
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þ e2�12
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¼ P
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where vn is the velocity component normal to the sides of
the triangle and s′ is the closed trajectory composed of the
three sides. s1 = s11 + s22, s2 = s11 − s22, DD = _211 + _222,

DT = _211 − _222, DS = 2 _212, D = [DD
2 + 1

e2(DT
2 + DS

2)]1/2, and
e = 2 is the ratio of major to minor axis of the elliptical yield
curve for the principal components of the stress. In the EVP
system, the internal stress is a function of the time‐ and
space‐satisfying tensor equations in equations (12)–(14),
which requires a shorter time step to resolve elastic waves.
Because the ice strain rates in these three equations are
related to the ice velocity, equations (10)–(14) need to be
integrated at the same time step. In the thermodynamics and
ice transport time step (Dt), equations (10)–(14) are inte-
grated at the subcycling time step of Dte = Dt/Nd, where
Nd = 120 is the default subintegration number in the
UG‐CICE as CICE.

Figure 2. Schematic of the unstructured triangular grid used for geographical spatial discretization in
UG‐CICE ((a) for the ice momentum equation and (b) for the ice transport equation). Definitions of vari-
ables are provided in the text.
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[14] Equations (12)–(14) are discretized in a semi‐implicit
form given as

�n̂þ1
1 � �n̂1
Dte

þ �n̂þ1
1

2T
þ P

2T
¼ P

2TDn D
n̂
D

�n̂þ1
2 � �n̂2
Dte

þ e2�n̂þ1
2

2T
¼ P

2TDn D
n̂
T

�n̂þ1
12 � �n̂12
Dte

þ e2�n̂þ1
12

2T
¼ P

4TDn D
n̂
S

8>>>>>>>><
>>>>>>>>:

; ð15Þ

so that s11
n̂þ 1 = 0.5(s1

n̂þ 1 + s2
n̂þ 1) and s22

n̂þ 1 = 0.5(s1
n̂þ 1 −

s2
n̂þ 1).
[15] We adopted the second‐order upwind scheme in

FVCOM to solve equations (10) and (11). This finite‐
volume algorithm has been well described by Kobayashi
et al. [1999] and Chen et al. [2003, 2006] and a brief
description are given here. Let Ru and Rv represent all the
terms on the right of the u and v in equations (10) and (11),
respectively, and superscript n̂ represents the n̂th time step
within Nd step integration. In Ru and Rv, the internal stress
terms are expressed implicitly at the (n̂+1)th time step.
Equations (10) and (11) with an implicit form of internal
stresses are integrated numerically from the n̂th time step to
(n̂+1)th time step using the modified fourth‐order Runge‐
Kutta time stepping scheme with second‐order accuracy
[Chen et al., 2003]. The procedure of the integration is given
as

u0R ¼ un̂; v0R ¼ vn̂; R0
u ¼ Rn̂

u; R
0
v ¼ Rn̂

v ;

ukR ¼ u0R � �k DteRk�1
u

4W
; vkR ¼ v0R � �k DteRk�1

v

4W

un̂þ1 ¼ u4R; v
n̂þ1 ¼ v4R

8>>>>><
>>>>>:

; ð16Þ

where k = 1,2,3,4 and (a1, a2, a3, a4) = (1/4, 1/3,1/2, 1). W
is the triangular area of the MCE where u and v are located.
After the ice velocity is integrated from equation (16) at a
subcycling step (Dte), the divergence terms, strain rates and
viscosity can be updated for the next subcycling integration
of equation (15). The ice mass m, ice strength P and external
wind and ocean stress do not change in the thermodynamics
time step (Dt).
[16] The ice transport equation (8) is calculated in the

integral form using the second‐order upstream scheme.
Integrating (8) over a TCE, we have

@ĝ

@t
¼ �

ZZ
Wĝ

r � ĝ~uð Þdxdy ¼ �
I
lWĝ

ĝvnds; ð17Þ

where Ŵĝ is the area of a TCE; the normal velocity vn at the
boundary of a TCE is given at each triangular centroid, and
ĝ at the boundary is calculated by linear interpolation from
the upwind control volume shown in Figure 2 where
ĝ ¼ ĝt þ @ĝ

@xDxþ @ĝ
@yDy; @ĝ

@x ¼ 1
Ŵĝ

H
^gdy; @ĝ

@y ¼ 1
Ŵĝ

H
ĝdx,

where Ŵĝ is the area of the control volume in the upwind
direction. A detailed explanation of the second‐order upwind
scheme used in the tracer calculation is given by Chen et al.
[2006].

2.3. Coupling of UG‐CICE and AO‐FVCOM

[17] We have implemented UG‐CICE into AO‐FVCOM.
The coupling of these two models is at the ice‐ocean
interface with ice mass, ice stress, and heat exchange. Salt
was treated as a conservative mass. The AO‐FVCOM is a
free surface model and in the ice‐free ocean, the salt flux is
zero at the sea surface. The precipitation minus evaporation
(P – E) at the surface provides freshwater into the ocean,
which changes the salt concentration and the sea surface
vertical velocity but not the salt flux at the air‐sea interface.
In the ice cover ocean, the local change of the ice mass per
unit area in UG‐CICE and AO‐FVCOM is added to the
kinematic condition of vertical velocity at the ice‐ocean
interface. In the ice model, the ice‐ocean salt flux is cal-
culated with an assumption of a constant reference salt
concentration of 4 PSU in ice. The salt flux at the ice‐ocean
interface of UG‐CICE and AO‐FVCOM considers the
variation of the total salinity change related to the ice vol-
ume change.

3. Validation Experiments for Idealized Cases

[18] Three idealized benchmark test cases were selected to
validate UG‐CICE via comparison with CICE. In CICE,
these test cases were designed to compare the EVP and VP
models, the ridging scheme and its instability, and ice‐current
interaction in high and low ice concentration regimes,
respectively. We have repeated these three experiments to
test the capability of UG‐CICE to capture the same structure
predicted by CICE in the structured‐grid‐based domain.

3.1. A 1‐D Steady State Solution

[19] Consider a one‐dimensional (1‐D) domain (0, L)
bounded by two solid walls (Figure 3). Under steady state
conditions, the gradient of the ice velocity in this domain at
time step n+1 can be written as the analytic expression
[Hunke and Dukowicz, 1997]

@unþ1

@x
¼

GP′=�max if � > �max

G @un

@x



 

 if �min < � < �max

GP′=�min if � < �min

8>>>><
>>>>:

; ð18Þ

where P′ = P/
ffiffiffi
5

p
; G = 4�ffiffi

5
p

P
L
2 � x
� �

; x is the horizontal coor-
dinate; n is the time step for numerical integration; u is
the ice velocity in the x direction; t is the total external
stress exerted on the ice surface, and the subscripts “max”
and “min” of z indicate the maximum and minimum bulk
viscosities. The steady state solution for u can be calculated
by iteration under given forcing and boundary conditions.
The solution is composed of three line segments, the inner

Figure 3. Schematic of the rectangular domain and trian-
gular grid used for a 1‐D steady state test problem.
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section characterized by zmax, the two outer sections by
zmin, and transition sections from inner to outer in which z
change from zmax to zmin.
[20] Following Hunke and Dukowicz [1997] with the ice

concentration of 0.9, the thick ice thickness of 0.6 m, the
thin ice thickness of 0.1 m, and the snow thickness of 0.1 m,
and forcing t of 0.9 kg/m/s2, ice strength P calculated with
equation (6) everywhere, the analytical solution for u can be
calculated by integrating equation (18) through iteration for
a given initial condition of u = 0, z = zmax everywhere, with
Dx = 12.7 × 103 m. The ice velocity in equation (18) reaches
a steady state solution in 200 iterations (with error of ice
velocity less than 10−5 cm/s). To set up a 2‐D model for a
1‐D experiment, we first configured the computational
domain by 4 uniform squares in the y direction and L/Dx in
the x direction, with a periodic condition in the y direction to
ensure no gradients for all variables in this direction. L is
58.8 km. The triangular grid is simply created by dividing
an individual square through its diagonal line. Two experi-
ments were conducted for horizontal resolutions of Dx =
12.7 × 103 m and 6.35 × 103 m. For both cases, the para-
meters were specified following the Hunke and Dukowicz
[1997] analytical solution. The time step is 40 s for both
cases, and the model reaches steady state over a day. The
results given here show the solution at the end of 24 h
integration.
[21] The steady state analytical solution for the ice

velocity is the solid line symmetric curve shown in Figure 4:
increasing rapidly over a distance of 10 km from the origin,
remaining a constant between 10 and 30 km and then
decreasing rapidly toward the right wall over a distance of
10 km. In Figure 4, the two dashed lines are the result for
both high‐ and low‐resolution cases. UG‐CICE‐predicted
ice velocity matches accurately with the analytical solution
within the transition zones connected to both walls. As also

seen in the results of CICE [Hunke and Dukowicz, 1997],
UG‐CICE shows a slight overshooting in the interior con-
stant velocity zone. This overshooting is reduced quickly
as the horizontal resolution is increased. We note that the
analytical solution displayed in Figure 4 of Hunke and
Dukowicz [1997] was smaller than the CICE‐predicted ice
velocity. That analytical solution shown in their paper was
not a fully steady state solution. That solution is close to a
value with 30 iterations, which is much smaller than the
iteration number (IT = 140) recommended by them. After
this correction, UG‐CICE‐ and CICE‐predicted ice veloci-
ties show the same accuracy compared with the analytical
solution. A slight difference was noticed between CICE and
UG‐CICE at the two‐zone transition where CICE seems a
little more diffusive than UG‐CICE. This suggests that the
finite‐volume algorithm used in UG‐CICE better resolves
the sharp velocity change in the transition zone [Chen et al.,
2003, 2007; Huang et al., 2008].

3.2. A 1‐D Ice Transport and Ridging Problem

[22] Consider a one‐dimensional problem with the domain
similar to that shown in Figure 3. The domain is initially
covered by a uniform distribution of ice. The ice has a mean
thickness of 2.73 m, which consists of five categories with
fractions of (0.05, 0.1, 0.3, 0.35, 0.2). A wind is specified to
blow from west to east at a speed of 10 m/s. Under these
conditions, the governing equation for the ice velocity can
be simplified to

m
@u

@t
¼ �x � Cwu� ð�þ 1Þ

2

@P

@x
; ð19Þ

where the definitions of variables in equation (19) are
described in section 2, a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=e2

p
is the parameter

measuring the standard yield curve, and e = 2. As a steady
state is reached, the ice velocity satisfies the analytical
expression

u ¼ 1

Cw
�x � �þ 1ð Þ

2

@P

@x

� 	
: ð20Þ

[23] Under free‐drifting conditions where ∂P/∂x = 0, u =
tx /cw. In the wind‐induced convergence zone near the
boundary, tx > Cwu, thus ∂P/∂x > 0. This case was used by
Lipscomb et al. [2007] to examine the CICE ridging scheme
and its stability. Using the same parameters, we reran this
case for comparison with CICE. P in equation (19) is
determined using equation (7).
[24] When forced by a westerly constant wind, the ice

begins to drift freely toward the east. As the ice starts piling
up toward the eastern wall, P and the ice stress gradient
increase. A steady state can be reached when P is balanced
by the wind stress. In this state, the ice velocity vanishes
everywhere.
[25] Driven by the same forcing in the rectangular

domain, UG‐CICE results were almost identical to CICE’s
presented by Lipscomb et al. [2007]. Figure 5 presents the
distributions of u (Figure 5, top) and P (Figure 5, bottom) at
days 1, 5, and 30. At day 1, u exhibits a peak of ∼17 cm/s
near the western wall, drops to ∼10 cm/s rapidly and
remains at this order in most of the interior area, and then
decreases to zero toward the eastern wall. Correspondingly,

Figure 4. The comparison of the along‐channel distribu-
tions of ice velocities (u) derived by the UG‐CICE and ana-
lytical solution.
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P remains zero on the western side of the peak velocity,
rapidly increases to 50 kN/m at the peak velocity and
remains this order in the interior, and then increases toward
the eastern wall as u decreases. As the time integration
increases, u in the interior gradually decreases and the u
peak remains the same and shifts eastward. As a result, the
magnitude and gradient of P increase with u decreases. At
day 30, P reaches 200 kN/m on the eastern wall. The
capability of UG‐CICE to reproduce the CICE’s results
indicates that UG‐CICE has the same accuracy and reli-
ability as CICE in the same structured‐grid domain.

3.3. Current‐Ice Interactions in Distinct Ice
Concentration Regimes

[26] We next consider a circular domain with radius R for
this test problem. The water velocity is specified as

uw ¼ 0:1 y� Rð Þ=R

vw ¼ �0:1 x� Rð Þ=R

8<
: ; ð21Þ

where x and y are the coordinates defined as 0 ≤ x ≤ 2R and
0 ≤ y ≤ 2R (2R = 1.28 × 103 km). On a f plane, the surface
stress can be expressed as

�x ¼ �ax þ Cw�w ~uw �~uj j uw � uð Þ cos �� vw � vð Þ sin �½ � þ mfv

�y ¼ �ay þ Cw�w ~uw �~uj j vw � vð Þ cos �þ uw � uð Þ sin �½ � � mfu

8<
: ;

ð22Þ

where u and v are the x and y components of the ice velocity,
rw is the water density, and � is the angle between water and
ice current vectors. The x and y components of the surface
wind stress are defined as

�ax ¼ cCa�aj~vaj ua cos�� va sin�ð Þ

�ay ¼ cCa�aj~vaj ua sin�þ va cos�ð Þ

8<
: ; ð23Þ

where Ca is the air drag coefficient, ra is the air density,
c is the ice coverage index (ice concentration) that varies
from 0 at the west boundary (x = 0) to 1 at the east boundary
(x = 2R), and � is the angle between the wind direction and
the wind stress vector on the ice. In this case, the wind is
assumed to be constant and blows from the southwest, with
x and y components of 5 m/s.
[27] Ignoring the surface tilting, the ice momentum

equations are given as

m
@u

@t
¼ @�1j

@xj
þ �x

m
@v

@t
¼ @�2j

@xj
þ �y

8>><
>>:

: ð24Þ

[28] The forcing conditions specified in this problem are
the same as those of Hunke [2001]. The only difference is
that CICE was tested for a square domain while here we use
a circular domain. The experiments were conducted for two
cases. The first is the free drifting case without inclusion of
the internal ice stress. In this case, the ice is driven by the

Figure 5. Along‐channel distributions of the UG‐CICE‐calculated ice velocity (u) and strength (P) at
model days 1, 5, and 30.
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wind via ocean currents and a steady state can be reached
when the wind stress is balanced by the ocean‐ice stress.
Ignoring the Coriolis force, an analytical solution for u and v
can be derived for the steady state. The second is the case
with inclusion of the internal ice stress under the same
external forcing condition. In this case, we also consider the
cases with and without Coriolis force.
[29] The initial ice concentration c increases linearly from

0 at x = 0 to 1 at x = 2R, with all existing ice having a
uniform thickness of 2 m. When driven by a constant wind,
this domain features two distinct dynamical regimes. In the
lower ice concentration area, the internal ice stress is small
and the ice movement almost features free drifting. In the
high ice concentration area, the current‐ice interaction can-
not be neglected and the ice movement can differ signifi-
cantly from free drift.
[30] For the free‐drifting case, with no Coriolis force and

sea surface gradient, ice movement can reach a steady state
when the wind stress is balanced by the net ice‐ocean stress.
In this state, equation (24) can be simplified to

�ax þ Cw�w ~uw �~uj j uw � uð Þ cos �� vw � vð Þ sin �½ � ¼ 0

�ay þ Cw�w ~uw �~uj j vw � vð Þ cos �þ uw � uð Þ sin �½ � ¼ 0

8<
: :

ð25Þ

[31] Defining V = Cwrw∣~uw − ~u∣ = Cwrw[(uw − u)2 +
(vw − v)2]

1
2, we can solve equation (25) for u and v yielding

u ¼ uw þ 1

V
�ax cos �þ �ay sin �
� 

v ¼ vw � 1

V
�ax sin �� �ay cos �
� 

8>><
>>:

; ð26Þ

where V2 = Cwrw(tax
2 + tay

2 )1/2. Figure 6a shows the distri-
bution of u for given � = � = 25° and the water current
velocity specified by equation (21). Given the same forcing
conditions with a quadratic ocean drag in the ice model,
UG‐CICE can quickly converge toward the analytical
solution (Figure 6b) in a timescale of < 1 day. This is the
first check for the UG‐CICE formulation for stresses.
[32] We next reran UG‐CICE with the same wind stress

and water velocity but adding the internal ice stress for a
time integration of 5 days. After 5 days, u in the low ice
concentration zone has the same pattern as the free drifting
case, while in the high ice concentration zone connected to
the eastern boundary, the ice velocity drops significantly
due to viscosity (Figure 6c). A large gradient of u appears in
the transition between viscous and free‐drifting zones.
When the Coriolis force is added, a narrow low u zone
appears near the eastern boundary, but the general pattern
remains unchanged (Figure 6d). For the cases shown in

Figure 6. The distribution of the x component of the ice velocity (u) for given � = � = 25° and the water
current velocity specified by equation (18). (a) UG‐CICE‐computed for the free drifting case, (b) the
analytical solution for the free drifting case, (c) UG‐CICE result at the end of fifth day for the case
including internal ice stress, and (d) the same as Figure 6c except adding the Coriolis force.
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Figures 6a–6c, the amplitudes of u and v are the same, while
for the case with Coriolis force, the balance between the
wind stress, ocean stress and internal ice stress is altered
causing an adjustment in u and v.
[33] Although our circular domain differs from the rect-

angular domain used by Hunke [2001], the characteristics of
the ice velocity in these cases are the same for UG‐CICE
and CICE. This indicates that the ice dynamics incorporated
in CICE remains unchanged when they are solved using
the unstructured‐grid, finite‐volume algorithm developed
for FVCOM.

4. Application of UG‐CICE to the Arctic Ocean

4.1. AO‐FVCOM/UG‐CICE and Design of Numerical
Experiments

[34] Based on the success in validating UG‐CICE for the
standard benchmark test problems presented above, we
applied AO‐FVCOM/UG‐CICE to the Arctic Ocean. The
focus here is to validate the capability of UG‐CICE to
capture the seasonal variability of the sea ice concentration,
coverage and drift in the Arctic Ocean under “climatologic”

forcing conditions. The “climatology” refers here to the
meteorological forcing derived from the European Center
for Medium‐Range Weather Forecast (ECMWF) reanalysis
ERA‐15 over 1978–1994, with daily surface wind stress, net
heat flux plus short‐wave irradiance, precipitation minus
evaporation, surface air temperature and pressure [source:
Ocean Modeling Intercomparison Project (OMIP at website
addressed http://www.omip.zmaw.de)]. This study was
carried out with the understanding that the model fields
predicted using “climatologic” forcing (based on averaging
over the 15 year time series) should capture the “mean”
seasonal variability in sea ice concentration, coverage and
drift but not show the significant interannual variations that
can occur in the Arctic Ocean.
[35] AO‐FVCOM/UG‐CICE is configured in the com-

putational domain shown in Figure 7, which covers the
entire Arctic Ocean and the Pan‐Arctic region including the
Canadian Archipelago, Hudson Bay, Baffin Bay, the Lab-
rador Sea, the Nordic Sea and the Bering Sea. We call it the
Pan‐Arctic region that differs from the domain used in the
previous AO‐FVCOM tidal experiment described by Chen
et al. [2009]. The domain has a horizontal resolution vary-
ing from 3∼5 km in the Canadian Archipelago and the
coastal region to 25∼50 km in the interior. A hybrid coor-
dinate is used in the vertical, with a total of 45 layers, 10 and
5 uniform (5 m thick) layers near the surface and bottom in
the regions deeper than 225 m, with a transition at this depth
to the s coordinate in the shallow continental and coastal
regions. The model bathymetry was interpolated from 2 min
resolution IBCAO/NOAA and DBDBV/ONR databases.
AO‐FVCOM/UG‐CICE was integrated numerically using
the FVCOM semi‐implicit solver with a time step of 600 s.
For UG‐CICE, 120 integrations at a time step of 5 s were
conducted to calculate internal ice stress.
[36] AO‐FVCOM/UG‐CICE is driven by (1) astronomic

tidal forcing constructed using eight tidal constituents (M2,
S2, N2, K2, K1, P1, O1, and Q1), (2) climatologic surface
forcing (wind stress, net heat flux plus short‐wave irradi-
ance, sea level atmospheric pressure gradient, precipitation
minus evaporation, sea surface air temperature, specific
humidity and total cloud cover), and (3) river discharges.
Boundary forcing of the domain are specified through one‐
way nesting with Global‐FVCOMdriven by the same forcing
as AO‐FVCOM/UG‐CICE. Global‐FVCOM includes 406
river inputs around the coast. The river discharges along the
U.S. and Canadian coasts are specified by the daily clima-
tologic means from USGS monitoring sites (source: http://
www.usgs.gov and www.ec.gc.ca), while the data outside
the U.S. and Canada are provided by L. F. Smedstad
(NCOM Group, personal communication, 2006). Tempera-
ture and salinity were initialized using the January global
climatologic fields that in the Arctic Ocean region were
constructed using the Polar Science Center Hydrographic
climatology (PHC3.0) [Steele et al., 2001]. UG‐CICE was
initialized using a default setup of CICE, with five uniform
categories and 2.53 m mean ice thickness covering the
ocean north of 70°N. Global‐FVCOM was first spin up for a
50 year period and all variables in the nesting boundary cells
at every time step for the 50 years were saved into the
nesting module file, which was then used to drive AO‐
FVCOM/UG‐CICE. With the initial and boundary condi-
tions from Global‐FVCOM, AO‐FVCOM/UG‐CICE can be

Figure 7. The coarse unstructured triangular grid config-
ured for AO‐FVCOM/UG‐CICE. Total numbers of triangu-
lar cells and nodes are 55,508 and 29,043, respectively, with
a horizontal resolution (measured by the side length of each
triangle) varying from 3–5 km in the Canadian Archipelago,
inlets and straits, and over the shelf break to 20–50 km in
the interior basins.
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spin up for our “climatologic” forcing conditions within
5 years.
[37] It should be noted here that for this experiment,

Global‐FVCOM and AO‐FVCOM use the same time step,
which can be run with a single grid with no nesting. The
reason for choosing this nesting approach is to make AO‐
FVCOM run more efficiently and have the flexibility of
refining the horizontal grid locally without the need to rerun
the global scale domain.

4.2. Model‐Data Comparison for Ice Concentration
and Drift Velocity

[38] The AO‐FVCOM/UG‐CICE results for the 6 year
simulation were compared with the observed ice concen-
tration and drift velocity data averaged over the time period
1979–1994. The observational data were obtained from the
National Snow and Ice Data Center (NSIDC). NSIDC has
two types of sea ice time series data sets (GSFC and Boot-
strap) derived from the same satellite measurements but
using two different channel data and algorithms [Cavalieri
et al., 2008; Comiso, 2008]. The difference of data sets
for these two algorithms was described by Johnson et al.
[2007], which shows that the Bootstrap data set provides
better agreement with field measurements during the sum-
mertime ice‐melting period. We selected the Bootstrap data
set for our model‐data comparison.
[39] UG‐CICE provides reasonable agreement with the

monthly averaged ice concentration in the Arctic Basin,
Canadian Archipelago, and Hudson/Baffin Bay. Examples

Figure 8. Comparison between distributions of (b and d) UG‐CICE‐calculated and (a and c) satellite‐
derived monthly ice concentration for March (Figures 8a and 8b) and September (Figures 8c and 8d).

Figure 9. Comparison of the UG‐CICE‐calculated monthly
ice extent with the observation estimated by the satellite‐
derived data averaged over 1979–1994. Solid line is
UG‐CICE, circles are observation, and the error bars on
the circles are the root square mean deviation relative to
the monthly mean value.
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are presented in Figure 8 for March and September. In
March, the satellite‐derived data (Figure 8a) show that the
entire Arctic is covered by ice and open water boundaries
in the lower region of Baffin Bay and off the slope of
Greenland. This distribution is well captured with UG‐CICE
(Figure 8b), except the model overestimates the ice coverage
in the marginal ice zone around Greenland. In September,
the satellite‐derived data (Figure 8c) show that the Hudson/
Baffin Bay, Alaskan coast, and Russian coast are free of ice
and the ice concentration in the Canadian Archipelago is
much reduced. This ice distribution pattern is captured by
UG‐CICE (Figure 8d). Similar to March, UG‐CICE under-
estimates the ice melting in the marginal ice zone around
Greenland.
[40] We believe that the overestimate of the ice concen-

tration in the marginal ice zone in UG‐CICE is due to the
lack of interannual variability of the ice concentration in our
experiment due to our use of “climatologic” forcing condi-
tions. The observed ice concentration distributions shown
in Figure 8 were constructed by averaging the monthly
satellite‐derived data for the 15 year period 1979–1994. The
satellite‐derived ice concentration data exhibit a significant
interannual variability in the marginal ice zone, which can be
seen in the root‐mean‐square deviation of ice extent that
counted the ice cover area with ice concentration exceeds

15% (Figure 9). This interannual variation was not resolved
in our experiment using the climatologic forcing. Taking this
variation into consideration, UG‐CICE is robust to capture
the seasonal variability in the ice concentration in the Arctic
region (Figure 9).
[41] The ice‐drift velocity is an important variable used in

validating a coupled ice‐current model, since the ice is
moved by combined surface winds and ocean currents. The
redistribution process of the ice can directly influence the
heat and salt transports. Observations of ice drift can be
traced back to the Arctic expedition age one century ago,
however, routine measurement from satellites started in the
late 1970s. The NSIDC ice‐drift velocity data were derived
from successive satellite images [Emery et al., 1997] com-
bined with the International Arctic Buoy Program (IABP)
through an optimal interpolation approach. The resolution of
this product is 25 km, which started in 1979 and continues
to the present. The monthly fields averaged over 1979–1994
are used here to compare with UG‐CICE results. To provide
a clear view, both satellite‐ and UG‐CICE‐derived ice‐drift
velocities were resampled with a 50 km resolution.
[42] AO‐FVCOM/UG‐CICE provides a reasonable sim-

ulation of the seasonal variability of ice‐drift velocity in the
Arctic region, particularly for the anticyclonic gyre, trans-
polar ice drift and ice export through Fram Strait. Direct

Figure 10. Comparison between March monthly mean ice‐drifting velocities computed by UG‐CICE
and derived from the satellite data averaged over 1979–1994. Black vectors are satellite data, red vectors
are UG‐CICE, and black contour is the mean air pressure.
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Figure 11. Comparison between September monthly mean ice‐drifting velocities computed by
UG‐CICE and derived from the satellite data averaged over 1979–1994. Black vectors are satellite data,
red vectors are UG‐CICE, and black contour is the mean air pressure.

Figure 12. Distributions of the root square mean deviation of the satellite‐derived ice‐drifting velocity
over 1979–1994 for (a) March and (b) September.
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model‐data comparisons were made for each month and
examples for March and September are shown in Figures 10
and 11, respectively. In March, the model captures the
anticyclonic drift pattern in the interior Arctic Ocean con-
sistent with the high air pressure center (shown by the black
contours), with intensified drift velocities around the Alaska
and Greenland shelf as well as in Baffin Bay. Similar
agreement is also found in September, during which the
anticyclonic ice‐drift gyre shrunk significantly as the ice
melt over the shelf.
[43] As with ice concentration, AO‐FVCOM/UG‐CICE

also shows a significant difference from the satellite‐derived
ice‐drift velocity in the ice marginal zone. The satellite‐
derived ice‐drift velocity field exhibited a significant inter-
annual variability consistent with the variability of the ice
concentration [Rampal et al., 2009]. Figure 12 shows the
root‐mean‐square deviation estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
u þ �2

v

p
where

su and sv are the monthly root‐mean‐square deviations for x
and y components of the ice‐drift velocity over 1979–1994.
The poor agreement between the model and data appears in
the region marked with significant interannual deviation.
Although the measurement uncertainty could also contribute
to the deviation, we believe that this deviation mainly counts
for the interannual variability of the ice‐drifting velocity. If
that is the case, AO‐FVCOM/UG‐CICE is robust to capture
the seasonal variability of the ice‐drifting velocity in the
Arctic region.
[44] It should be noticed here that the model‐data com-

parison is made without considering the uncertainties in the
satellite‐derived ice data and meteorological forcing. Hunke
and Holland’s [2007] studies suggested that the variance of
external forcing could significantly influence the results of
numerical simulation in the Arctic Ocean. Johnson et al.
[2007] compared GSFC, Bootstrap, Hadley Center and
Walsh data sets for ice concentration and coverage and
found remarkable differences, even though they came from
the same raw data source. The vertical atmospheric water
vapor content and melting surface of sea ice/snow can
restrict the retrieval of reliable ice‐drift velocity using pas-
sive microwave radiometers [Kwok et al., 1998].Martin and

Gerdes [2007] compared the satellite‐derived ice drift and
the IABP ice‐drifter velocities. Both data generally agreed
well in speed, but it did show a noticeable difference in the
drifting direction.

5. Discussion

[45] In addition to ice concentration, coverage and
velocity, the relationship of the principal components of
stress in the ice model is a key criterion to evaluate the
reality and accuracy of an ice model [Zhang and Hibler,
1997; Zhang and Rothrock, 2000; Hunke, 2001]. Due to
the strong nonlinearity in the viscous‐plastic dynamics, the
internal stresses, strain rates and viscosities need to be
solved through iteration with a smaller time step to make
them all converge to the elliptical yield curve [Hunke, 2001].
We solve the ice momentum and internal stress equations in
a subcycling time step of Dte with iterations of Nd = 120.
Figure 13 shows the normalized principal components of
stress for the benchmark test case 3 with inclusion of the
Coriolis force (described in section 3) and the real appli-
cation case for the Arctic Ocean sea ice simulation
(described in section 4). In our calculation, sI and sII are the
eigenvalues of the stress tensor sij divided by the pressure P.
In the Arctic Ocean case, we pick up the stress states every
5 nodes at a random simulation time. Both cases show the
principal components of the stress from UG‐CICE lay on or
inside the elliptical yield curve, which suggests that the
numerical algorithm used in the UG‐CICE captures the
nonlinear viscous‐plastic ice dynamics.

6. Summaries and Conclusion

[46] UG‐CICE was developed by converting CICE into
an unstructured‐grid, finite‐volume version of CICE under
the FVCOM framework, and implemented into the FVCOM
model system for ice simulation in the Arctic Ocean. The
model has been validated for three idealized benchmark test
problems and then used to simulate the seasonal variability
in ice concentration, coverage and drift velocity in the Arctic
and its adjacent regions.

Figure 13. Distributions of normalized principal components of stress for (a) the benchmark test case 3
with the inclusion of the Coriolis force and (b) the Arctic Ocean application case described in section 4.
The values of principal stress in Figure 1b were picked at every fifth node point at a random time.
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[47] For the given same rectangular domain, UG‐CICE
configured with unstructured triangular grid is capable of
reproducing the results of CICE. The finite‐volume algo-
rithm used in UG‐CICE provides a better resolution of the
sharp velocity change in the transition zone. For an appli-
cation of AO‐FVCOM/UG‐CICE to the Arctic region,
driven by “climatologic” meteorological forcing, tides and
river discharge, the model is robust to capture the seasonal
variability of the sea ice concentration, coverage and drift
velocity within the interannual variation range.
[48] Our present work is focused on development and

validation of UG‐CICE in the FVCOM model system.
However, the satellite‐derived daily and monthly fields of
the ice concentration and drift velocity clearly show a sig-
nificant interannual variability. Based on the results pre-
sented here, the AO‐FVCOM/UG‐CICE system is well
suited to investigate the seasonal and interannual variability
of the ice field in the Arctic Ocean under realistic forcing
conditions.
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