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[1] Observing system simulation experiments (OSSEs) were performed for Nantucket
Sound, Massachusetts, as a pilot study for the design of optimal monitoring networks
in the coastal ocean. Experiments were carried out using the ensemble Kalman filter
(EnKF) for data assimilation with ensemble transform Kalman filter (EnTKF) and
proper orthogonal decomposition (POD) for selecting the optimal monitoring sites. The
singular evolutive interpolated Kalman filter (SEIK) was compared with EnKF for the
data assimilation efficiency. Running the unstructured grid Finite‐Volume Community
Ocean Model (FVCOM) with perturbed initial fields of currents, water temperature, and
salinity show that in this shallow coastal system, the velocity and surface elevation are
able to restore themselves back to the true state over an inertial time scale after perturbation
without data assimilation, while the water temperature and salinity are not. This
suggests that in this vertically well mixed region with strong tidal influence, monitoring
should be targeted at water properties rather than velocities. By placing measurement
sites at an entrance or exit or a location with the maximum signal variance (EnTKF) or
at extrema of the dominant EOF spatial modes (POD), we evaluated the capability of
EnTKF and POD in designing the optimal monitoring site for the forecast model system in
this region. The results suggest that understanding the multiscale dynamical nature of
the system is essential in designing an optimal monitoring network since “optimal” sites
suggested by an assimilation method may only represent a local‐scale feature that has
little influence on a region‐wide system. Comparing EnKF and SEIK simulations shows
that SEIK can significantly improve the data assimilation efficiency by reducing the
ensemble number and increasing the convergence rate.

Citation: Xue, P., C. Chen, R. C. Beardsley, and R. Limeburner (2011), Observing system simulation experiments with
ensemble Kalman filters in Nantucket Sound, Massachusetts, J. Geophys. Res., 116, C01011, doi:10.1029/2010JC006428.

1. Introduction

[2] Integrated ocean observation systems (IOOS) have
received extensive public and government attention, with an
aim at predicting the response of coastal ecosystems to
global climate change; improving the safety and efficiency
of maritime operations; mitigating the damages from natural
and environmental hazards; and maintaining ocean and
coastal resources [Intergovernmental Oceanographic
Commission, 2003]. By efficiently linking between moni-
toring network, modeling and management, an IOOS can
form an “end‐to‐end” system with forecast capability.
Building and maintaining an observational network, how-
ever, is extremely costly, so that an optimal design of this

system is a key issue that directly affects whether or not an
IOOS will succeed. Observing system simulation experi-
ments (OSSEs), which were used by Charney et al. [1969]
for the Global Atmospheric Research Program (GARP),
have been adopted for the design of an observing system
aimed to improve ocean prediction through the use of data
assimilation [Hackert et al., 1998; Raicich and Rampazzo,
2003; Ballabrera‐Poy et al., 2007].
[3] As a modeling component of the Northeast

Regional Association of Coastal Ocean Observing Systems
(NERACOOS), a joint research team of University of
Massachusetts Dartmouth and Woods Hole Oceanographic
Institution has developed the Northeast Coastal Ocean
Forecast System (NECOFS). Nantucket Sound was selected
as a pilot OSSE site by the Massachusetts Institute of Tech-
nology Sea Grant Program for the design of an optimal
monitoring network inMassachusetts (Figure 1). Bounded by
Cape Cod on the north, Nantucket Island and Martha’s
Vineyard Island on the south, Nantucket Sound is a tidally
dominated, “flow‐through” system that connects Cape Cod
inlets, bays, and estuaries to adjoining “upstream”waters (the
Gulf of Maine to the east and the New England shelf to the
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south) and “downstream” waters (Vineyard Sound and
Buzzards Bay). Due to strong tidal flushing around islands
and significant temporal variation in wind forcing, currents in
Nantucket Sound are characterized by complex geometrically
controlled multiscale variability.
[4] The Nantucket Sound component of NECOFS was

validated through a comparison of modeled and observed
tidal and subtidal currents, water temperature and salinity
for 2004–2006; an example for the 2006 subtidal current
comparison is presented in Figure 2. With resolution of the
complex coastal geometry, the model captures both spatial
and temporal variability of currents and stratification in
Nantucket Sound. The accuracy of the model simulations
provides a foundation to be used for OSSEs.
[5] The primary objective of the OSSEs in Nantucket

Sound is to use data assimilation methods to help in the
design of an optimal field measurement plan for the forecast
model system in this coastal area. As a sister project, Yang
et al. [2011] used the proper orthogonal decomposition
(POD) based approach to select optimal sensor locations in
Nantucket Sound. As an alternative approach, we have
adopted the ensemble Kalman filter methods. By conducting
twin experiments with an ensemble of initial perturbed fields
generated using a Monte Carlo approach [Evensen, 1994],
we have examined the dependence of the success of data
assimilation on memory of the local dynamics system, the

impact of ensemble size on the success of OSSE‐based data
assimilation experiments, and the optimal design of moni-
toring sites in this area. A comparison is also made on
Kalman filter and POD methods based on a dynamical
analysis of the flow characteristics in Nantucket Sound.
[6] This paper summarizes the OSSEs results in Nan-

tucket Sound. In section 2, the hydrodynamic model and
design of the data assimilation experiments are described. In
section 3, the nature of self‐restoration of momentum in
Nantucket Sound is explored. In section 4, the results of
different experiments are presented. In section 5, compar-
isons of different optimal sampling strategies are conducted
and discussed. In section 6, Lagrangian particles and tracer‐
tracking experiments are made to understand the influence
of the local multiscale dynamics on the data assimilation
performance. Conclusions are summarized in section 7.
EnKF and SEIK are compared regarding ensemble size and
computational efficiency in Appendix A.

2. The Model, Data Assimilation Methods, and
Design of the Experiments

2.1. The Model and Study Site

[7] The OSSEs in Nantucket Sound were conducted
using the second‐generation Gulf of Maine FVCOM
(hereafter referred to as FVCOM‐GOM2): the unstructured

Figure 1. Bathymetry of Nantucket Sound and adjacent region. Letters b–g denote sampling locations
selected for experiments (see text). The site marked “e” is the maximum signal variance site predicted by
EnTKF. Sites f, f1, and f2 are optimal sampling sites suggested by the first mode of POD analysis using
the temperature fields of the initial ensemble, hourly model output of the first week in June, and 3‐hourly
model output over June, respectively. The site marked “g” is the maximum �S site suggested by the coher-
ence analysis method on the basis of the forecast error covariance. Red circles are the Nobska moorings
(N3 and N4) deployed in 2006 to measure cross‐channel structure of the Vineyard Sound current. Nan-
tucket Sound borders the Gulf of Maine (GOM) to the east and the New England Shelf (NES) to the south
and through Vineyard Sound to the west with Rhode Island Sound (RIS) and Buzzards Bay (BB).
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grid, finite volume, three‐dimensional (3D) primitive
equation coastal ocean model configured as the ocean
model component of NECOFS (http://fvcom.smast.umassd.
edu/research_projects/NECOFS/index.html) for the Gulf of
Maine and New England coastal ocean [Chen et al., 2003,
2006a, 2006b]. FVCOM‐GOM2 uses the generalized ter-
rain‐following coordinate system [Pietrzak et al., 2002] in
the vertical and nonoverlapping triangular meshes in the
horizontal. The flux formulation for momentum and scalars
(e.g., temperature, salinity) are solved numerically using the
second‐order accurate finite volume scheme, which guar-
antees mass conservation in both local individual cells and
the entire domain. FVCOM‐GOM2 has been validated by
hindcast simulation of tidal and subtidal currents, temper-
ature and salinity, and an example for Nantucket Sound is
presented in Figure 2.
[8] The twin data assimilation experiments in Nantucket

Sound were conducted in the NECOFS subdomain area
shown in Figure 3. This subdomain is linked to FVCOM‐
GOM2 through a one‐way nesting approach, with the hor-
izontal resolution varying from 0.3 to 0.5 km inside Nan-
tucket Sound to 9 km off the coast to the open boundary. In
the vertical, the water column is divided into 30 layers, with
a resolution of ∼0.3 m or less inside Nantucket Sound. The
model was driven by tidal forcing, surface wind stress and
atmospheric pressure, surface heat flux, net precipitation
minus evaporation, plus freshwater discharge from the
coastal rivers. FVCOM‐GOM2 was solved using the mode–
split time integration approach, with time steps of 4.0 s for
the external mode and 40 s for the internal mode.

2.2. Data Assimilation Methods

[9] The OSSEs were carried out using ensemble Kalman
filter (EnKF) [Evensen, 2003, 2004; Chen et al., 2009] for
data assimilation, with options of the ensemble transform
Kalman filter (EnTKF) [Bishop et al., 2001; Majumdar
et al., 2002] and proper orthogonal decomposition (POD)
[Yang et al., 2011] for selecting the optimal monitoring
sites. The singular evolutive interpolated Kalman filter
(SEIK) [Pham et al., 1998; Pham, 2001] was used to
compare EnKF for the data assimilation efficiency. To
shorten the text, the discussion of the EnKF and SEIK
comparison is described in Appendix A.
[10] EnKF can be derived from the traditional analysis

equation in the Kalman filter in the form of

xa ¼ x f � K y� Hx f
� �

;Pa ¼ P f � KHP f ;

K ¼ P f HT HP f HT þ R
� ��1 ð1Þ

where x f and xa denote arrays of model forecast and analysis
values, respectively; y is an array of observational values; K
is the Kalman gain, P f, Pa and R are the forecast, analysis
and observational error covariances, respectively; and H is
an observational operator that functions as an objective map
to interpolate the model data onto the observational points.
EnKF is a Monte Carlo approximation of the Kalman filter,
which essentially replaces error covariance matrix by the
sample covariance from ensemble states. Given an ensemble
of model forecast states xj

f ( j = 1, 2, 3,…, ne) with size ne,
EnKF calculates (1) for each member of the ensemble and

Figure 2. Comparison between the observed (red) and simulated (black) subtidal surface currents at
mooring sites (N3 and N4) in the west exit of Vineyard Sound. The buoy N3 was located at 41°
29.669′N, 70°40.961′W in May–August 2006 and then moved to N4 at 41°28.870′N, 70°40.251′W in
September–November 2006.
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updates the model field using the ensemble mean of analysis
values. In practice, an ensemble of initial perturbed fields is
generated by randomly selecting snapshots of model simu-
lation results using a Monte Carlo approach.
[11] EnTKF can also be derived from the traditional

analysis equation in the Kalman filter described in (1). The
transformation matrix T̂ is defined by

T̂ ¼ C Gþ Ið Þ�1=2 ð2Þ

where C and G are eigenvectors and eigenvalues of the
matrix xf

T HT R−1 Hxf. With this transformation, the analysis
error covariance equation in (1) can be rewritten as

Pa ¼ Pf � xf CG 1þ Gð Þ�1C
h i

xTf ð3Þ

where xf = (x f − x f) /
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ne � 1

p
. The overbar represents the

ensemble mean. Using (3), one can explicitly estimate the
prediction and analysis error variances. An optimal moni-
toring site can be determined by selecting a location at

which the trace of Pa reaches its minimum. This is equiv-
alent to selecting a location at which the signal variance
defined by the trace of the second term on the right side of
(3) reaches its maximum. In fact, for small models, it might
be feasible to simply compute Pf HT (HPf HT + R)−1 HPf in
equation (1) and its trace for all possible observational
networks H to find that which minimizes analysis error
variance, but EnTKF provides a more computationally
efficient way to estimate the analysis error variance and
even its propagation to future forecasts. In practice, it is
achieved by running EnTKF experiments by selecting
computational nodes or cells to determine the site for maxi-
mum signal variance. This approach was first recommended
by Bishop et al. [2001] for atmospheric data assimilation
experiments and tested by S. J. Lyu et al. (Optimal fixed and
adaptive observation arrays in an idealized wind‐driven
ocean model, unpublished manuscript, 2009) to design opti-
mal fixed and adaptive observation arrays in an idealized
wind‐driven ocean model. The same approach was used in
our EnTKF experiments.

Figure 3. Unstructured grid of (bottom) FVCOM‐NS nested with (top) the second‐generation regional
model FVCOM‐GOM2. The black line shown in the top grid is the location of the node at the nesting
boundary. See http://fvcom.smast.umassd.edu/research_projects/NECOFS/index.html for more informa-
tion about NECOFS and FVCOM‐GOM2.
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[12] POD is principally an EOF analysis method. Let V(t)
be the true state variables. By using EOF analysis, V(t) can
be approximated by

V tð Þ � ~V tð Þ ¼
XK
i¼1

bi tð Þ’i ð4Þ

where ~V (t) is the analysis state variables, ’i is the ith
dominant EOF mode, bi(t) is the corresponding coefficient
of ’i, and K is the number of significant EOF modes. The
best prediction can be reached for the condition

E ¼k V ðtÞ � ~V tð Þ k2m) min ð5Þ

where m is called the mask vector, which only counts the
variable value at observational sites. Substituting (4) into (5)
and differentiating (5) with respect to bi(t), we can derive a
linear algebra matrix in the form of

Mb ¼ l ð6Þ

where M is a matrix consisting of (’i,’i)m and l is the vector
array constructed by (Vm(t),’i)m., where Vm(t) is the point-
wise product of the mask vector m and V(t).
[13] In an incomplete (gappy) true state system, the true

value of V(t) in (4) is only known at measurement sites but
unknown at all other locations. Different designs of mea-
surement strategy produce different M. Based on the
requirement for minimum E, Willcox [2006] suggested that
sampling should be taken for the condition in which M has a
minimal matrix condition number (defined as the ratio of the
maximum singular value to the minimum singular value of
the matrix M). Yildirim et al. [2009] pointed out in their
experiments that this approach does not always work well.
Instead, they proposed placing the observational sites at
locations where the variations of the dominant EOF modes
are the largest. Recently, Yang et al. [2011] found that in
Nantucket Sound, the largest variation points of different
EOF modes may be very close to each other. Eliminating
these close points could help reduce the number of the
observational sites and thus improve the efficiency of the
optimal design. In our experiments, we did not repeat
the work of Yang et al. [2011]. Instead, we used their POD
ideas to select observational site(s) at the largest variation
points of the dominant EOF modes and run the model using
EnKF to compare the results with other methods.
[14] Combining the advantages of POD and EnTKF

methods, we developed a new method to determine the
optimal observational locations using the coherence func-
tion constructed by the forecast error covariance. Following
EnTKF, we first calculate the correlation matrix D as

Di;j ¼ Pi;jffiffiffiffiffiffi
Pi;i

p ffiffiffiffiffiffi
Pj;j

p ð7Þ

where Di,j and Pi,j are the ith row and jth column of D and
Pf, respectively. Considering the observation sites, we
define S as the sum of all elements of HD (here H is the
observation operator defined in EnKF) in the form of

S ¼
X

HDð Þi;j ð8Þ

where (HD)i,j is the ith row and jth column of HD, H will
differ as the observation site changes. The optimal obser-
vational site can be determined by selecting a point at which
S has its maximum. This is also equivalent to selecting a
point at which the maximum value of �S(mean of S) is found.

2.3. Experiment Designs

[15] The OSSEs were made through twin experiments in
which the hindcast model simulation is defined as the
“nature” run and served as the true state of the OSSE to
compare with the assimilation model run with perturbed
initial conditions. The data assimilation is approached by
selecting hourly sampled time series of the data at “moni-
toring sites” from the hindcast model simulation and adding
the random noise at a scale of 0.01°C to represent obser-
vational errors. The convergence of the assimilation run
toward the true state is used to measure the success and
efficiency of the data assimilation method. The comparison
of the assimilation model runs with different monitoring
sites provides us with a view of the sensitivity of the model
convergence rate to selection of observational sites and
variables and thus helps us design an optimal local obser-
vational system to meet the requirement for the short‐ and
long‐term forecast capability of a model.
[16] Four twin experiments were conducted for the sum-

mertime period of 1–30 June 2006. This is the period with
the largest spatial variation of water temperature, even
though the water is vertically well mixed. Experiment 1
(Ex1) was designed to examine the memory of currents and
water properties to the initial perturbation. The primary
question was whether or not the flow and water property
fields could restore back to the true solution after the initial
perturbation if the external forcing and boundary conditions
were correct. This experiment was made by running the
nested Nantucket Sound subdomain model with incorrect
initial fields of flow, temperature and salinity without data
assimilation. Experiment 2 (Ex2) was made to examine
the capability of EnKF to filter the initial noise and restore
the model fields toward the true solution by assimilating the
data at monitoring sites at the entrance or exit boundaries of
Nantucket Sound. Experiment 3 (Ex3) was aimed at com-
paring different optimal sampling model techniques on the
performance of the design of the optimal observing system.
These techniques included the choice of the monitoring sites
by seeking (1) the maximum signal variance (Sig‐Var)
suggested by EnTKF [Bishop et al., 2001], (2) the maxi-
mum variance of EOF spatial modes suggested by POD
[Willcox, 2006; Yildirim et al., 2009; Yang et al., 2011], and
(3) the maximum correlation area between the monitoring
site and the entire assimilation domain (hereafter referred to
as Max‐Corr). Experiment 4 (Ex4) was conducted to com-
pare the EnKF and SEIK methods. The size of the ensemble
is a critical issue that can limit the use of EnKF in realistic
forecast applications. We hypothesize that the ensemble size
should be determined by the physical dynamics in the study
region, which can be better understood with EOF analysis. If
this approach is correct, SEIK, with initial ensemble mem-
bers constructed using the dominant modes of EOF, should
work efficiently in coastal applications. Ex4 was designed to
answer this question. The EnKF data assimilation was
approached using an ensemble with twenty members sug-
gested for coastal ocean problems by Chen et al. [2009], and
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the ensemble of initial perturbed fields was generated by
randomly selecting daily snapshot of model simulation
results in the previous month. Whether or not twenty
members were sufficient is discussed in Ex4.
[17] To help understand the performance of different data

assimilation methods in the selection of different monitoring
sites, we have examined the dynamics controlling the
dominant physical processes in this system. Tracking
Lagrangian particles and releasing dye tracers provide a
detailed description of the temporal and spatial scale of
water movement in Nantucket Sound. Our study suggests
that in addition to simply relying on existing data assimi-
lation technology, understanding the multiscale nature of the
local dynamical system is helpful in the design of the
optimal sampling plan.

3. Self‐Restoring Nature of Momentum in NS

[18] Data assimilation is aimed to restore the system
toward its true solution. However, it would become
unnecessary if the system is capable of restoring itself after
initial perturbation. For the tidal flushing case in an ideal-
ized estuary, Chen et al. [2009] found that the data assim-
ilation becomes trivial and the model field in such a highly
dissipative estuarine system can converge rapidly toward the
true state without any assimilation. Nantucket Sound is a

vertically well mixed region characterized by strong tidal
flushing. The first question here is whether this region is a
self‐restoring system.
[19] Ex1 shows that without data assimilation, the surface

elevation and currents converge toward the true state in a
short time scale of ∼19 h, while the temperature and salinity
fields contain large errors over a much longer time scale
(Figure 4). These features remain similar no matter how the
initial fields of currents and water properties are perturbed.
The inertial period in Nantucket Sound is 18.6 h. This
experiment indicates that currents in Nantucket Sound have
a short memory to its initial condition. For given correct
surface forcing and boundary conditions, it can self‐restore
toward its true states over an inertial time period without
using data assimilation.
[20] The fact that the temperature and salinity fail to

restore toward the true solution in Ex1 suggests that the
response of scalar variables to initial perturbation differs
from the momentum. The scalar tracers have a long memory
of their initial condition, so that once their initial condition is
destroyed, it would take a much longer time to adjust back
to the true solution. This can be explained using a simple
box model for water temperature. In this experiment, the
change of the mean temperature in the nested Nantucket
Sound subdomain is controlled by surface heating and flux
from the lateral boundaries such as

�T ¼ �To þ Dt

�cpV
Qsurface þ Qboundaries

� � ð9Þ

where T is water temperature, the overbar indicates the mean
value over the total water volume (V), subscript o represents
the initial state, cp is the specific heat capacity, r is the
density of seawater, Qsurface and Qboundary are the surface
and lateral boundary heat fluxes, and Dt is the time interval.
For given surface and lateral boundary heat fluxes, equation (9)
shows that the mean temperature in this region depends on
the value of �To. The surface and lateral heat fluxes con-
tribute to the change of the temperature, but the mean
temperature in the region depends on the initial condition.
Once the initial condition is destroyed, the system would not
be able to restore back without the aid of data assimilation.
The role of data assimilation is to add or subtract heat into
the system. This result is also applicable for salinity.
[21] We have learned from Ex1 that in this vertically well

mixed region, if the surface and boundary forcing are cor-
rect, the momentum has a self‐restoration nature over an
inertial time period, while the water mass cannot restore
over such a short time period. Once the water mass is per-
turbed from its true state, the model fails to converge toward
the true solution without data assimilation.

4. The EnKF Experiment Results

[22] Nantucket Sound is a “flow through” dynamical
system. One straightforward design is to set up the moni-
toring sites at the entrance or exit of this system. Ex2 was
designed to use EnKF to test this idea with data assimilation
applied for water temperature. Four cases were considered
in the experiment. In case a, three hypothetical moorings
were deployed (see Figure 1), one at each entrance or
exit. In cases b–d, only a single hypothetical mooring was

Figure 4. Change of the domain‐averaged RMS errors in
surface elevation, currents, temperature, and salinity with
time after the initial perturbation for the case (case a) with-
out assimilation. The inertial period (Tf) is 18.62 h in Nan-
tucket Sound.
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deployed, which was located in the eastern entrance between
Cape Cod and Nantucket Island in case b, in the southern
entrance between Nantucket Island and Martha’s Vineyard
Island in case c, and in Vineyard Sound in case d.
[23] In case a, the EnKF succeeded in restoring the model

field toward to the true solution within the random error
range implemented in the 20 members of ensemble. The
root‐mean‐square (RMS) error of temperature dropped from
an initial value of ∼3°C to 0.25°C within the first 24 h and
remained at this noise level afterward (Figure 5). This result
suggests that by assimilating the “observed” temperature at
the entrance and exit of Nantucket Sound, the model can
restore the temperature field in this region toward the true
state. This also means that with the correct surface heat flux,
correcting the temperature flux at boundaries of Nantucket
Sound through the data assimilation is capable to filter the
noise generated by the initial condition in the interior.
[24] The cases b–d were designed to determine which

boundary plays a critical role in controlling this system. The
EnKF results predict significant convergence tendencies for
these three cases (Figure 6). The performance is best in case
d and the worst in case b. Case c shows the same conver-
gence rate as case d in the first hour, but the errors do not
decrease monotonically as in case d. The RMS error after
the first 24 h assimilation period is 1°C for case b; 0.4°C for

case c; and 0.27°C for case d. The results for case d are very
similar to that for case a, suggesting that the exit of Nan-
tucket Sound through Vineyard Sound should be considered
as the optimal location of temperature measurements if the
monitoring system consists of a single mooring in one of the
entrances or exits of this region.
[25] To test the sensitivity of sampling locations at each

boundary to the assimilation convergence rate, we repeated
case b and c experiments by moving the mooring site from
location b (shallow) to b1 (deep) and from location c (deep)
to c1 (shallow), respectively (Figure 1). The results show
that the convergence rates are improved when the sampling
location is moved to a deeper region. However, case d still
produced the fastest convergence rate.

5. Comparisons of Different Optimal Sampling
Strategies

[26] A comparison is made here for sampling strategies of
EnTKF, POD and Max‐Corr via the EnKF result for case d
in section 4. Using EnTKF, we found that the location
marked by e (hereafter referred to as site e; Figure 1) has the
maximum signal variance (Figure 7a). By definition, site e
should be an optimal location for the temperature mea-
surement. Selecting this location and assimilating the tem-

Figure 5. The distributions of (left) the “true” and (middle) analysis surface temperatures and (right)
their difference at hours 0, 1, and 12 for case a. White dots in the top left plot are the three sampling sites
used for this experiment.

XUE ET AL.: OSSES WITH ENKF IN COASTAL WATER C01011C01011

7 of 16



perature data into the model by EnKF, we found that the
RMS error predicted by this method, however, does not
show a faster decrease than that for case d, and the RMS
error remains over 1°C after 24 hourly assimilation cycles
(Figure 8).
[27] Site f is the location of the maximum variance cal-

culated in the EOF analysis of initial ensemble temperature
fields following POD (Figure 7b). Through assimilating the
temperature data at this site into the model, the model does
show a better convergence than the result from the signal
variance method using EnTKF. The RMS error sharply
drops during the first three assimilation cycles (Figure 8).
After a 1 day assimilation, the RMS error decreases to
∼0.6°C, however, the convergence rate toward the true
state in this case is still not as good as in case d. The
determination of the largest variance site in EOF modes
depends on the “snapshots” of the water temperature field
used to create these modes. Due to the temporal and spatial
variation of the coastal system, the largest variation site of
the dominant EOF modes of water temperature may differ
when different snapshots are taken. The sites f1 and f2 are
the locations of the largest variation of the first dominant
EOF mode created by the model “true” temperature fields
for the entire month (sampled over a 3 h interval) and of
the first week of that month (sampled over a hourly
interval), respectively (Figures 7c and 7d). The conver-
gence tendencies in these two cases are improved in the
first three assimilation cycles when compared to the case
with site f, but the RMS errors after six assimilation cycles
for all three cases remains similar (Figure 8).
[28] Site g is the location at which �S is a maximum

(Figure 7e). Selecting this point as the observation site, the
assimilation shows a fast convergence almost the same as
that shown in case d. The RMS error drops quickly in the
first assimilation cycle, down to ∼0.5°C by the fifth assim-
ilation cycle, and then remains at a value of ∼0.35°C after

that (Figure 8). The Max‐Corr method was inspired by the
traditional Kalman filter formulation, which shows that the
influence function Pf HT spreads the observational infor-
mation to the entire assimilation region. This suggests that
the average correlation between the observation and entire
domain becomes important for the success of Kalman filters.
One could imagine that if the selected observation site has
no or low correlation with the rest of the assimilation
domain, the model would be unable to make an accurate
estimate of model state based on information from this
sampling location.

6. Lagrangian Particle‐ and Tracer‐Tracking
Experiments

[29] The OSSEs results show that the convergence rates of
placing sensor location by seeking maximum signal vari-
ance (EnTKF) or by seeking extrema of dominant EOF
modes (POD) are not as good as sampling at site d in
Vineyard Sound and site g determined by the Max‐Corr
method. To explain why the assimilation results are sensi-
tive to location, we conducted particle‐ and tracer‐tracking
experiments to examine the flow field in Nantucket Sound.
[30] A total of 92 particles (∼30 particles at each transect)

were released at the eastern, southern and western bound-
aries of Nantucket Sound at the beginning of June 2006 and
tracked for 7 days, respectively (Figure 9). The subtidal
trajectories show that the particles released at the eastern
boundary all flowed southward out of Nantucket Sound and
then around Nantucket Island to continue moving westward,
with a few particles entering the southern boundary of
Nantucket Sound. This suggests that during the assimilation
period, the water inside Nantucket Sound was not supplied
from the eastern boundary, which explains why the con-
vergence rate was low when the sampling location was
placed at that boundary. The subtidal particle trajectories

Figure 6. Change of the domain‐averaged RMS errors in temperature with time in the first 24 assimi-
lation cycles for cases a, b, c, and d. The assimilation was conducted on an hourly basis.
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Figure 7. (a) Distribution of the signal variance estimated by EnTKF, with “e” showing the location of
the maximum signal variance. Distributions of the first dominant POD spatial modes of the temperature
calculated using the initial ensemble and the true model field sampled at (b) hourly intervals in the first
week of June and (c) a 3 h interval in the entire period of June; f, f1 and f2 are the locations of the largest
variation of the first mode for these three cases, respectively. (e) Distributions of correlation coefficients
calculated using the initial ensemble, with “g” showing the location of the maximum correlation value.

XUE ET AL.: OSSES WITH ENKF IN COASTAL WATER C01011C01011

9 of 16



Figure 8. Comparison of the domain‐averaged RMS errors of temperatures estimated for case d with
those estimated for cases e, f, f1, f2, and g.
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released at the southern boundary show three major paths:
the first flowing northeastward and then turning westward to
flow through Vineyard Sound, the second moving south-
westward around Martha’s Vineyard Island toward Buz-
zards Bay, and the third drifting northeastward around
Nantucket Island. It is clear that the first path is the major
inflow water source to the interior of Nantucket Sound,
while the third path features a local around‐the‐island flow
and second path represented a local cyclonic return flow
around Martha’s Vineyard Island. This explains why the
assimilation results at a sampling site in the first path of the
water stream shows a better convergence rate than that at
the eastern boundary, because the flow in the interior of
Nantucket Sound is controlled by the inflow from that area.
All particles released at the upstream area of Vineyard
Sound flowed southwestward along the sound toward

Rhode Island Sound and Buzzards Bay. Water in the interior
of Nantucket Sound clearly flows out through its western
exit into Vineyard Sound, thus any change in the water
transport in Vineyard Sound directly affects the flow in the
interior of Nantucket Sound. This is the reason why placing
the sampling site in Vineyard Sound shows the best con-
vergence rate in the assimilation experiments (case d).
[31] The same features were found in the tracer‐tracking

experiments. Chen et al. [2008] pointed out that in an
inhomogeneous flow field, tracer movement significantly
differs from particle movement due to vertical and lateral
diffusion. Dyes with a unit concentration were injected
throughout the water column at the eastern and southern
boundaries and the interior region of Nantucket Sound (see
the white bars and white box in Figure 10), respectively.
The resulting spread of the dye released on the eastern and
southern boundaries was consistent with the particle tra-
jectories. At the eastern boundary, the core of the dye moved
southward and then around Nantucket Island, while a small
portion entered Nantucket Sound and then flowed northward
within the near‐boundary region of roughly 20 km, the local
tidal excursion scale. This suggests that the motion around
the eastern boundary features two distinct local scales (wind
and tide‐induced flows), with little direct correlation to the
outflow in Nantucket Sound. Similarly at the southern
boundary, the flow features two distinct scales: one is for the
regional scale directly related to the motion in the interior
of Nantucket Sound and outflow in Vineyard Sound, and
the other is for the local scale related to the flow around
Martha’s Vineyard Island and Nantucket Island. The dye
released in the interior of Nantucket Sound mostly flowed
toward Vineyard Sound, with a small portion flowing out of
Nantucket Sound at the eastern and southern boundaries.
[32] Both particle‐ and dye‐tracking results suggest that

the flow in Nantucket Sound is controlled by multiscale
physical processes: local tidal forcing, local and island‐
related topographic interactions, and larger‐scale subtidal
wind and buoyancy forcing. Figure 11 shows the tidal
excursion scale in Nantucket Sound. In the interior, the
scale is about 10∼15 km; at each boundary, the maximum is
over 25 km. The complex features of the currents are seen
in the distribution of monthly averaged near‐surface sub-
tidal currents shown in Figure 12. Figure 12 clearly shows
the multiscale flow field characterized by tidal flushing‐
induced eddies, slow subtidal flow and large horizontal
current shears. For the regional scale, Nantucket Sound is a
“flow‐through” system, but on a local scale, it is a tidally
flushed and geometrically controlled system. For a given
surface net heat flux, temperature in Nantucket Sound is
controlled primarily by advection through the boundaries.
Thus if the monitoring is aimed at forecasting water tem-
perature in the interior of Nantucket Sound, the sampling
plan should be designed to reflect the regional‐scale “flow‐
through” system.

7. Conclusions

[33] OSSEs were conducted for Nantucket Sound to
investigate different approaches to design an optimal mon-
itoring system in this region. Experiments were carried out
using the local higher‐resolution Nantucket Sound sub-
domain FVCOM model through nesting with the regional

Figure 9. Subtidal particle trajectories released at the (top)
eastern, (middle) southern, and (bottom) western boundaries
of Nantucket Sound at the beginning of June and tracked for
7 days. Red lines indicate the three transects where particles
were released. The total number of particles released was 92
(∼30 particles at each transect).
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Figure 10. Distributions of the vertically averaged dye concentrations at (top) day 1, (middle) day 4, and
(bottom) day 7 for the cases in which dye was injected throughout the water column at the (left) eastern
and (middle) southern boundaries and (right) the interior region of Nantucket Sound. The white bars and
the area enclosed by the white box indicate the regions of initial dye injection.
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Figure 11. Map of tidal excursion scale (L�) in Nantucket Sound and adjacent region estimated using the
model simulation results.

Figure 12. The FVCOM‐predicted monthly averaged subtidal surface currents for June 2006.
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FVCOM‐GOM2. The results suggest that in this vertically
well‐mixed coastal region, the velocity and surface eleva-
tion have a self‐restoring nature over an inertial period scale
after initial perturbation, while water temperature and
salinity do not. By placing temperature measurement sites at
the open boundaries of this “flow‐through” system, the
assimilation results show that locating the sampling site at
the exit of Nantucket Sound into Vineyard Sound produces
better convergence than when the site is located on the
eastern and southern boundaries. Lagrangian and tracer‐
tracking experiments show that the flow in Vineyard Sound
is directly correlated with the flow in the interior of Nan-
tucket Sound, while the flows around the eastern and
southern boundaries are characterized by multiscale pro-
cesses with much lower correlation with the interior Nan-
tucket Sound flow. The sampling locations determined by
the maximum signal variance suggested by EnTKF or the
extrema of spatial EOF modes suggested by POD do not
provide as good a result as the sampling sites located in
Vineyard Sound. These results indicate that attention should
be paid to the multiscale nature of physical processes in the

study region when an assimilation method is used to design
the optimal monitoring network.
[34] By constructing a preconditional ensemble using

dominant modes, SEIK can significantly reduce the
requirement of a large ensemble size and thus improve the
Kalman filter data assimilation in comparison with EnKF.
This method is suitable for OSSEs in the coastal ocean.
[35] Our OSSEs in Nantucket Sound were conducted as

a pilot study for the coastal region. Since the dynamics in
the coastal ocean vary significantly in time and space, the
results found in this system may not be applicable to other
coastal regions. The most important result of this work is the
approach used in the design of the optimal monitoring sites.
Designing the monitoring network should be undertaken
with a full understanding of the multiscale dynamical nature
of the study area, rather than depend solely on data assim-
ilation methods.

Appendix A: Comparisons of EnKF and SEIK
for Optimization of Ensemble Generation

[36] The OSSEs conducted with EnKF in this study pro-
vide us with a tool to design and evaluate the optimal design
of a sampling plan in Nantucket Sound. In most real
applications, however, one of major concerns in using EnKF
is how to create the initial ensemble with an appropriate size
that can capture the main characteristics of the true error
covariance. Since the computational time required for the
assimilation is proportional to the size of the ensemble, it
becomes impractical to use EnKF for the forecast operation
if a large ensemble size is required.
[37] SEIK is the ensemble Kalman filter method with a

different strategy of creating the initial ensemble. In tradi-
tional Monte Carlo sampling, in order to let the ensemble‐
represented error covariance converge to the true error
covariance, one usually tries to include more model states in
the ensemble [Hamill et al., 2001; Evensen, 2004]. As long
as the additional model states increase the spanned error
subspace, this approach leads to a more accurate estimation
of true error covariance but scarifies at a proportional
increase in computational effort. Alternatively, Nerger et al.
[2005] showed that the ensemble size can be reduced by
using the initialization approach proposed with SEIK [Pham
et al., 1998]. By preanalyzing a large amount of model
states and rotating them to generate preconditioned initial
states that retain the span of error subspace in the smaller
ensemble size, SEIK can achieve the same assimilation
results with a significantly smaller ensemble size. In theory,
the minimum ensemble size can be the dominant error
covariance rank plus one [Pham et al., 1998; Nerger et al.,
2005]. An ensemble generation procedure analogous to that
typically used in SEIK for the EnKF was discussed by
Evensen [2004].
[38] In this study, we tested SEIK with a comparison to

EnKF. Two experiments were made. In the first experiment,
we tested EnKF by selecting different ensemble sizes. This
experiment was aimed to determine the minimum ensemble
size for EnKF for this dynamical system. Then in the second
experiment, we conducted SEIK to determine the efficiency
of this approach in reducing the ensemble size via EnKF.
[39] In the first experiment, to determine the ensemble

size for our data assimilation experiment, we first sampled

Figure A1. (top) The first 80 normalized EOF eigenvalues
calculated using the temperature field output at a 3 h interval
from the simulation (“true state”) experiment. (bottom)
Changes in the domain‐averaged RMS temperature errors
during the first 30 EnKF assimilation cycles for the cases
with an ensemble size N = 12, 16, 20, and 24.
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240 model states with a 3 h interval over the entire month of
June. Figure A1 (top) shows the normalized EOF eigenva-
lues. The first seven eigenvalues represented over 99%
of the total energy captured by the 240 model states. It
indicates that Nantucket Sound can be described as a low‐
dimensional system (which was pointed out in the POD
experiment by Yang et al. [2011]). For this reason, we
expect that the required ensemble size is O(10). We reran
EnKF with an ensemble size N = 8, 12, 16, 20 and 24;
results are shown in Figure A1 (bottom). For N = 8, EnKF
failed to produce a convergence solution (not shown). For
N = 12, EnKF converged for a few assimilation cycles
before diverging in later stages. With N = 16, the filter
showed a good and stable performance and the RMS error
dropped to 0.32°C over the first 30 h (0.25°C over the 96 h)
assimilation cycles. No significant improvement was found
for N = 20 and 24, indicating that 16 member ensemble
were sufficient for EnKF in the Nantucket Sound OSSEs,
although for a conservative approach, we used ensemble
with N = 20 in our experiments presented in this study.
[40] In the second experiment, following Nerger et al.

[2005], we used the computational efficient analysis for-
mulation to construct a preconditional ensemble for SEIK.
The basic idea of this formulation is to generate the sto-
chastic ensemble of r +1 state initialization to represent the
r largest eigenmodes (which usually (but not necessarily)
can be done with EOFs) of the predetermined error
covariance through the larger presampling of the initial
state. This approach allows a model to describe the error
covariance with a minimum ensemble size while the error
evolution is still propagated by the nonlinear model as the
EnKF. A detailed description of this method was given by
Pham et al. [1998] and Nerger et al. [2005].
[41] We presampled 24 model initial states to estimate the

initial error covariance. With SEIK, we generated 8, 16, 20
and 24 preconditioned ensemble members based on the

largest 7, 15, 19 and 23 eigenmodes, respectively. In our
EOF analysis for the first experiment, the dominant 7
eigenmodes account for over 99% of the total energy in the
estimated error covariance. The assimilation results of SEIK
show that with an ensemble size N = 8, SEIK was able to
produce as good a performance as was obtained with EnKF
with N = 16, with a reduction of the computation load of
EnKF nearly 50% (Figure A2). Nonetheless, a larger
ensemble size with SEIK also shows a better and more
stable performance (Figure A2). It is clear that a larger
ensemble size acts to restrain the noise‐to‐signal ratio. For
real coastal applications, SEIK should be more computa-
tionally efficient than EnKF.
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