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[1] The unstructured grid finite volume coastal ocean model (FVCOM) system has been
expanded to include nonhydrostatic dynamics. This addition uses the factional step method
with both split mode explicit and semi‐implicit schemes. The unstructured grid finite
volume method, combined with a correction of the final free surface from its intermediate
value with inclusion of nonhydrostatic effects, efficiently reduces numerical damping
and thus ensures second‐order accuracy of the solutions with local/global volume
conservation. Numerical experiments have been made to fully validate the nonhydrostatic
FVCOM, including surface standing and solitary waves in idealized flat‐ and sloping‐
bottomed channels in homogeneous conditions, the density adjustment problem for lock
exchange flow in a flat‐bottomed channel, and two‐layer internal solitary wave breaking
on a sloping shelf. The model results agree well with the relevant analytical solutions
and laboratory data. These validation experiments demonstrate that the nonhydrostatic
FVCOM is capable of resolving complex nonhydrostatic dynamics in coastal and estuarine
regions.

Citation: Lai, Z., C. Chen, G. W. Cowles, and R. C. Beardsley (2010), A nonhydrostatic version of FVCOM: 1. Validation
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1. Introduction

[2] The unstructured grid finite volume coastal ocean
model (FVCOM) is a state‐of‐the‐art open source commu-
nity model that has been applied to global/basin/regional
scale ocean, coastal, and estuarine studies [Chen et al.,
2003, 2006a, 2006b, 2007]. FVCOM was developed origi-
nally with the hydrostatic approximation in which the rate of
change, advection, and diffusion of the vertical velocity are
ignored and the pressure gradient in the vertical is balanced
by gravity. According to scaling analysis, the hydrostatic
balance is valid for large‐scale motions in regional scale and
larger‐scale ocean waters, where the horizontal motion is
dominant [Mahadevan et al., 1996a;Marshall et al., 1997a].
In coastal and estuarine waters, particularly over shallow
banks and the shelfbreak where internal waves can be ener-
getic, and in inlets or narrow river passages, where the
motion’s horizontal scale can be comparable to the local
depth, the flow is influenced by nonhydrostatic dynamics. In
these regions, the nonhydrostatic process contributes directly
to the generation of high‐frequency external/internal waves
[Beji and Battjes, 1994; Gerkema, 2001; Vlasenko and

Hutter, 2002; Scotti et al., 2007] and strong vertical stirring
during convection [Jones and Marshall, 1993].
[3] Recently, we have implemented nonhydrostatic dynam-

ics into FVCOM. This work was motivated to take advantage
of the flexibility of the unstructured grid in refining the grid
locally to resolve nonhydrostatic processes with minimum
sacrifice of computational efficiency. Because of the require-
ments of inverting a large sparse matrix for pressure and high
horizontal resolution to resolve small‐scale flows at a length
scale of O (1–100 m), running a nonhydrostatic model over
a basin or regional domain needs significant computing
powers, which is usually impractical or even intractable. The
fact that most nonhydrostatic processes observed in coastal
areas are small‐scale, localized features makes it more suit-
able to use an unstructured grid model to locally employ
high‐resolution grids (where required to resolve the non-
hydrostatic dynamics) while maintaining a coarser mesh in
the remaining portion of the domain. This approach would
enable resolution of complex multiscale dynamical processes
and their interactions in an integrated coastal‐estuarine system.
[4] To modify the underlying equation system from

hydrostatic to nonhydrostatic, the fundamental problem is to
find the total pressure (P) with affordable computational
costs. Following the traditional approach used in non-
hydrostatic ocean models, we decomposed the total pressure
into hydrostatic and nonhydrostatic components [see, e.g.,
Mahadevan et al., 1996b; Marshall et al., 1997b]. Then a
fractional step method [Chorin, 1968] was used, through
which the hydrostatic pressure is computed explicitly from
the free surface elevation and the density field, and the non-
hydrostatic pressure is determined on the condition that
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the local velocity field must be divergence‐free. We have
implemented both the “projection” and “pressure correction”
fractional step methods [Armfield and Street, 2002] into
FVCOM. In the projection method, the momentum equations
are first integrated using a hydrostatic pressure gradient to
obtain the intermediate velocities. This intermediate field
is then corrected using the nonhydrostatic pressure gradient
to produce a solenoidal velocity field [Mahadevan et al.,
1996b; Marshall et al., 1997b; Casulli and Stelling, 1998;
Kanarska and Maderich, 2003; Heggelund et al., 2004].
Similar to the projection method, the pressure correction
method also solves the momentum equations using a frac-
tional step approach. The key difference is that the non-
hydrostatic pressure gradients are included in the first step
when the intermediate velocities are determined [Stansby and
Zhou, 1998; Casulli, 1999; Zijlema and Stelling, 2005;
Fringer et al., 2006; Kanarska et al., 2007]. Since these two
methods represent a fairly straightforward augmentation of
existing hydrostatic ocean models and are relatively inex-
pensive in terms of computational costs, they are widely used
in the development of nonhydrostatic ocean models. Methods
that include the spontaneous momentum and pressure update
have also been employed [Stelling and Zijlema, 2003; Yuan
and Wu, 2004; Namin et al., 2001]; however, they are pri-
marily used for inviscid surface wave problems.
[5] There arises a fundamental issue when a fractional

step scheme is used to add a nonhydrostatic capability to an
ocean model, which employs a split mode explicit time‐
stepping method. In a mode split model, an adjustment must
be made at every internal time step to ensure consistency
between the vertically integrated water transport produced
by the external and internal modes [Mellor, 2004;Chen et al.,
2006b]. For hydrostatic models, the internal velocities are
adjusted to the external velocities at each time step to ensure
the consistency of volume transport, since the velocities
calculated by the external mode are generally more accurate
than the vertically integrated velocities calculated from the
internal mode. For nonhydrostatic models, however, allow-
ing the internal velocities to be adjusted to the external
velocities could be problematic, since the free surface and the
2‐D velocities determined in the explicit external mode
update do not have the (n + 1)th time nonhydrostatic effect.
For nonhydrostatic models using a semi‐implicit time‐
stepping method, such an adjustment for velocities is not
required. However, in the semi‐implicit scheme, the pre-
dicted free surface elevation will be damped if the non-
hydrostatic effects are not properly included in the free
surface update as used in the projection method [Casulli
and Stelling, 1998; Casulli, 1999].
[6] A simple solution to restoring the free surface eleva-

tion accuracy was adopted in semi‐implicit nonhydrostatic
models by using the pressure correction method so that the
nonhydrostatic effect can be considered when solving the
free surface equation (see, e.g., UNTRIM [Casulli and
Zanolli, 2002] and SUNTANS [Fringer et al., 2006]). The
values of the computed free surface elevations are then fixed at
the end of each time step assuming the correction for (n + 1)th
time nonhydrostatic pressure will only exert a small change in
the free surface elevation, such that the accuracy is not
affected [Fringer et al., 2006]. Therefore, the pressure cor-
rection method is used in the mode split nonhydrostatic
ROMS [Kanarska et al., 2007]. With this method, the non-

hydrostatic effect can be considered in the external mode.
This approach appears to maintain the accuracy of the pre-
dicted external velocities, which can be used to ensure the
consistency between the barotropic and baroclinic fluxes. A
small error, however, could still exist in the external velocities
and subsequently in the free surface elevation since the depth‐
integrated nonhydrostatic pressure gradients must be “frozen”
over the entire external substeps [Kanarska et al., 2007].
[7] In nonhydrostatic FVCOM (hereafter FVCOM‐NH),

we use a different approach. First, the depth‐integrated
nonhydrostatic pressure gradients are always included in the
external mode to give the best estimate of the free surface
elevation when either the projection method or the pressure
correction method is used. Second, the free surface elevation
and the external velocities determined in the external mode
are only regarded as intermediate values. At the end of each
internal time step, the intermediate external velocities are then
adjusted to the vertically integrated internal velocities. This
adjustment procedure is in fact opposite of that used in the
hydrostatic FVCOM. The adjusted external velocities are
further used to inversely correct the intermediate free sur-
face elevation with the inclusion of the current time step
nonhydrostatic effect. Unlike UNTRIM and SUNTANS,
this free surface elevation correction is also employed in the
semi‐implicit time‐stepping FVCOM‐NH to make sure that
the free surface elevation exactly matches the divergent free
velocity field. With these new algorithms, we have obtained a
nonhydrostatic model that ensures consistency between the
free surface elevation, local velocities, and the nonhydrostatic
pressure field and consequently an improved capability for
mass conservation.
[8] FVCOM‐NH has been validated for both idealized

homogeneous and stratified fluid dynamics problems. For
homogeneous cases, the experiments include a surface
standing wave problem in a deep flat‐bottomed basin and a
surface solitary wave problem in both flat‐bottomed and
linearly varying sloping‐bottomed channels. For stratified
cases, the experiments are focused on a lock exchange flow in
a closed rectangular tank and internal solitary waves breaking
on a sloping shelf. These selected benchmark test cases
have been widely used to validate different nonhydrostatic
numerical solvers. For example, the lock‐exchange problem
was used by Härtel et al. [2000] for spectral methods,
Bourgault and Kelley [2004] (hereafter referred as B&K) and
Kanarska et al. [2007] for the finite difference method, and
Fringer et al. [2006] for an orthogonal unstructured grid finite
volume method. The simulation of internal solitary waves
represents a more realistic coastal problem to apply non-
hydrostatic modeling. Since internal waves are frequently
observed over steep slopes near seamounts, shelf breaks,
submarine banks, and sills, where the water is stratified, it is
critical to validate FVCOM‐NH to assess its capability to
simulate finite amplitude internal waves and robustness to
reproduce the major features of the internal wave shoaling
and breaking. On the basis of the excellent performance of
FVCOM‐NH in these test cases, we have successfully used
FVCOM‐NH to investigate the tidally generated large‐
amplitude high‐frequency nonlinear internal waves observed
each summer in Massachusetts Bay [Lai et al., 2010].
[9] The remainder of this paper is organized as follows.

The algorithms used in solving FVCOM‐NH are described
in section 2, the validation experiment results are presented
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in section 3, and a discussion and summary are provided in
section 4.

2. Formations and Discretization Procedures
of FVCOM‐NH

[10] FVCOM‐NH was originally coded using the s
coordinate system and has recently been modified to use
the generalized terrain‐following coordinate system [Pietrzak
et al., 2002]. The discrete approaches used to solve FVCOM‐
NH are the same in these two coordinates. Since the valida-
tion experiments presented in this paper were made using
uniform layers in the vertical, the description given below is
based on the s coordinate version.
[11] The nonhydrostatic, free surface primitive equations

in the s coordinate transformation consist of the following
momentum, continuity, temperature, salinity, and density
equations given as
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where x, y, and z are Cartesian coordinates in eastward,
northward, and upward directions, respectively; u, v, w are
x, y, z velocity components; t is time; w is the transformed
vertical velocity in the s coordinate; z is the free surface

elevation; D = H + z; H is the static water depth; T is water
temperature; S is salinity; pa is the air pressure at the sea
surface; q is the nonhydrostatic pressure; f is the Coriolis
parameter; r is the in situ density; r0 is the reference den-
sity; g is the gravity acceleration; Ĥ is the absorption of
downward shortwave irradiance; Km is the vertical eddy
viscosity; Kh is the thermal vertical eddy diffusion coeffi-
cient; and Fu, Fv, Fw, FT, and FS represent the horizontal
diffusion terms in the momentum, thermal, and salt equa-
tions. A detailed description of the mathematical forms of
the shortwave flux and horizontal diffusion terms are given
in the FVCOM user manual [Chen et al., 2006b].
[12] Km and Kh are parameterized by either specified

empirical formula or solving a turbulence closure model.
FVCOM uses the Mellor and Yamada level 2.5 (MY‐2.5)
turbulence closure model [Mellor and Yamada, 1982;
Galperin et al., 1988] as a default setup, with the General
Ocean Turbulence Model (GOTM) as an option [Burchard
et al., 1999; Burchard, 2002]. Horizontal diffusion coeffi-
cients are either specified as constant or calculated using
Smagorinsky’s turbulence closure scheme [Smagorinsky,
1963]. w satisfies the continuity equation with the same
form as that derived in the hydrostatic model [Chen et al.,
2003]. It is given as
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P is the total pressure, i.e., the sum of the surface atmo-
spheric pressure (pa), hydrostatic pressure (pH), and non-
hydrostatic pressure (q), in which
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and q is determined by solving the pressure Poisson equa-
tion that is derived from the discrete decomposition using
the fractional step method described below [Chorin, 1968].
[13] Define that u*, v*, and w* are the x, y, and z com-

ponents of the intermediate velocity. Then equations (1)–(3)
can be discretized as
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where superscript n is an index representing the nth time
step; Fx and Fy indicate the sum of advection, Coriolis, air
pressure gradient, surface and hydrostatic baroclinic pressure
gradients, and horizontal diffusion terms in the x and y
momentum equations (1)–(2); and Fz is the sum of advec-
tion and horizontal diffusion term in the z momentum
equation (3). In the right‐hand side (RHS) of equations (10)–
(12), D will be treated as Dn in the explicit nonhydrostatic
pressure gradient term. Otherwise, it uses the intermediate
value of D since the vertical diffusion terms are treated
implicitly. Since the (n + 1)th value of D is still not available
in equations (13)–(15), it is approximated by D* and has
been divided on both sides. q′ is the perturbation non-
hydrostatic pressure defined as

qnþ1 ¼ a � qn þ q0; ð16Þ

where a is a scalar switch that is set to zero in the projection
method and to unity in the pressure correction method.With
a = 0, the nth time step nonhydrostatic pressure gradient will
not be included in the intermediate momentum update, while
with a = 1, qn is taken into account for the best estimate of the
current time step nonhydrostatic pressure gradient. Differ-
entiating equations (13)–(15) with respect to x, y, and z and
then substituting the resulting divergence equation into
equation (4), we can derive the Poisson equation for q′ as
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This equation is discretized using the same second‐order
accurate finite volume method used in the hydrostatic version
of FVCOM (Appendix A). This results in the linear system

Aq0 ¼ b; ð18Þ

where A is a sparse matrix with a dimension of Nnode (the
node number) × Klayer (the vertical layer number) and b is a
vector constructed from the right‐hand side source terms in
equation (17). The resulting matrix is diagonally dominant
and asymmetric and can be solved efficiently using Krylov
subspace methods, such as biconjugate gradient, BiCGSTAB
and GMRES [Saad, 2000], in FVCOM‐NH. In the present
work, all the validations cases are solved by the GMRES
method. Boundary conditions for equation (17) are set as
follows. At the surface,

q0 ¼ 0; ð19Þ

at the bottom, a no‐flux condition normal to the slope results
in

@q0

@�
¼ D tan �

1þ tan2 �ð Þ
@q0

@n
; ð20Þ

where n is the unit horizontal directional vector component
normal to the slope on the s surface and b is the slope of the
bottom bathymetry. At the lateral solid boundary, the no‐flux
condition normal to the wall is specified as
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where nh is the unit directional vector normal to the wall and
nx and ny are the x and y components of nh. At open bound-
aries, we assume that nonhydrostatic processes can be ignored
by setting the RHS in equation (17) to zero or freezing the
intermediate velocities. The nonhydrostatic pressure gradient
at the open boundary is derived from equations (13)–(14).
This approach can effectively avoid a sharp nonhydrostatic
pressure gradient at the open boundary for the case when
directly setting q′ = 0.
[14] Solving the RHS of equation (17) requires the surface

boundary condition for the intermediate velocity w*. Setting
q′ = 0 within the top layer cell was proposed to avoid such a
difficulty in some nonhydrostatic models. This approach,
however, can cause a significant phase error for surface
wave problems [Yuan and Wu, 2004; Zijlema and Stelling,
2005]. Instead of directly specifying w* at the surface, we
reconstruct the gradient ofw* in the top layer from the interior
values using a fourth‐order Lagrangian extrapolationmethod.
With a more accurate gradient in w* near the surface, the
model is able to maintain q′ in the top layer cell, which can be
used to correct horizontal velocity components under the
nonhydrostatic effect in that cell. With a corrected horizontal
velocity, the final w can be updated by integrating from
bottom to surface the local continuity equation. This method
was employed by Fringer et al. [2006] to enforce a sole-
noidal velocity field. Since the discrete continuity equation
is satisfied exactly, this method effectively avoids the
potential issue that the gradient of the solution of q might
not exactly satisfy the continuity equation at the discrete
level in FVCOM‐NH.
[15] Surface and bottom boundary conditions are required

to solve equations (10)–(11) for the intermediate velocity.
The horizontal momentum equations can be solved with the
flux conditions determined by surface wind and bottom
stresses in the same form as those in the hydrostatic model.
For the vertical momentum equation, to avoid numerical
errors introduced by the unknown values of u* and v* at the
free surface and the change of z with time (when the discrete
kinematic boundary conditions are applied), we transform
the vertical velocity in the vertical diffusion terms into w in
equation (12). Since w is zero at the surface and bottom, it
allows us to simplify the vertical flux condition with a more
accurate surface boundary condition.
[16] FVCOM‐NH can be integrated in time using either

a split mode explicit or a semi‐implicit time‐stepping
approach. A brief description of these two methods is given
in Appendix B. A major concern of nonhydrostatic models
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for real ocean application is the high computational cost due
to the requirement of solving a large, sparse nonhydrostatic
pressure matrix [Marshall et al., 1997b; Kanarska et al.,
2007]. Three steps are used here to solve the discrete equa-
tion for q with maximum efficiency. First, FVCOM‐NH is
parallelized using the same efficient MPI‐based framework
as employed in the hydrostatic version of FVCOM [Cowles,
2008]. Second, a scalable sparse matrix solver library
(PETSc) [Balay et al., 2007] is implemented into the code to
support the parallel computing environment for matrix
solvers. Third, we employ an algebraic multigrid precondi-
tioner using the high‐performance preconditioners (HYPRE)
software library [Falgout and Yang, 2002] that can be inter-
faced directly to the PETSc iterative solver and provides

further reduction in computational costs for solution of
equation (18).

3. Validation Experiments

3.1. Surface Standing Waves in a Deep Basin

[17] Consider that a standing wave is generated by the
superposition of two small amplitude surface waves that
have the same period and amplitude but propagate in opposite
directions. Assuming that the waveforms are along the x axis
with no variation in the y direction, the governing equations
for the standing wave under linear, inviscid, nonrotating
conditions are
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where p′ = r0gz + q is the perturbation pressure as the sum of
the hydrostatic pressure due to the free surface elevation and
nonhydrostatic pressure q, r0 is the fluid density and is
assumed to have a constant value of 1000 kg/m3, and g =
9.81 m/s2 is the gravitational acceleration. The analytical
solutions for this problem can be found in the literature [e.g.,
Lamb, 1945; Jankowski, 1999; Kundu and Cohen, 2002].
[18] In our case, a uninodal standing wave of free surface

perturbation (z0 = 0.1 m) is initiated in a closed 2‐D (x‐z)
basin with a length of L = 10.0 m and an equilibrium depth
of H = 10.0 m (Figures 1 and 2). This results in a non-
hydrostatic deepwater wave, where the wavelength is the
same as the local depth and the theoretical phase speed (c =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g=kð Þ tanhÞ kHð Þp
) and period are ∼5.58 m/s and ∼3.59 s,

respectively. This case was selected mainly to examine
the stability and accuracy of the split mode explicit non-
hydrostatic algorithm and the nonhydrostatic pressure Pois-
son solver with an approximate treatment of the surface
boundary condition. Because the solutions describe a periodic
oscillation of an inviscid fluid within a closed domain, this
case also provides a good test to examine the numerical

Figure 1. Schematic of the control volume for q′ in the
unstructured grid FVCOM‐NH.

Figure 2. Schematic of the (bottom) unstructured grid and (top) vertical geometry of an idealized flat‐
bottomed channel used for the surface standing wave problem.
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damping and mass conservation properties of FVCOM‐NH
over a long‐term integration.
[19] FVCOM is inherently a 3‐D model. To apply it to

this 2‐D (x‐z) problem, we configure it in a rectangular
channel with a special design to ensure all variables do
not vary in the y direction, which is equivalent to using the
periodic boundary condition in the y direction. In this case,
the domain consists of 40 × 4 squares in the horizontal (x‐y)
and 40 uniform layers in the vertical (Figure 2). The non-
overlapping unstructured triangular grid in the horizontal
plane is created simply by dividing each square into two
triangles, with a triangle’s side length of 0.25 m. Without
further notification, the same triangulation and 2‐D treat-
ment has been applied to all of the following test cases. The
model is integrated for 600 s using an internal mode time

step 0.05 s (also used for the nonhydrostatic pressure
update) with a ratio of internal to external mode time step
of 10. Using this time step, the estimated Courant number
(Cr = cDt/Dx) is 1.12 in this case. The model is run with an
initial condition provided by the analytical solutions at t = 0,
with a sloping free surface, zero velocity, and zero non-
hydrostatic pressure. Setting q = 0 as the initial state is
consistent with the projection method in which the non-
hydrostatic pressure is not considered for the intermediate
stage at the first time step. We first run the model for a linear
case and then rerun it with the inclusion of the nonlinear
terms. The results shown here are from the nonlinear case
run, which is identical to the linear case.
[20] Figure 3 shows the comparison of model‐predicted z,

current vectors, and q with the analytical values at three

Figure 3. Sections of (left) analytical and (right) FVCOM‐NH–computed solutions for the free surface
elevation (dashed line), current vectors, and nonhydrostatic pressure (contours) in the x‐z plane at t = 5.0,
5.5, and 6.0 s.
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select times. FVCOM‐NH reproduces very closely the
standing surface wave with a free surface oscillating around
the nodal point in the middle of the channel and having equal
maximum amplitudes on both end walls. As a result, the
horizontal velocity vectors are strongest at the surface and
decreases with depth, while the vertical velocity is strongest
near the solid walls where the largest free surface variation is
located. The pressure remains zero throughout the water
column at the nodal point and increases symmetrically toward
the solid end walls.
[21] The numerical damping in FVCOM‐NH is insignif-

icant in a long‐term simulation. The model‐predicted wave
crests and troughs remain almost unchanged over the total
600 s time integration (over 160 oscillation cycles) (Figure 4a).
By examining the depth integrated over the closed domain,

we find that the conservation of the model‐predicted total
volume (mass) is quite accurate (Figure 4b). This result
demonstrates that the unstructured grid finite volume algo-
rithm used in FVCOM‐NH has excellent numerical damping
properties.
[22] By analyzing the model‐predicted free surface time

series, we find that the new algorithm to treat the external/
internal mode adjustment in mode split FVCOM‐NH is
highly accurate and ensures better consistency between the
free surface, divergence‐free velocities, and nonhydrostatic
pressure field. Using the split mode explicit time‐stepping
and pressure correction method, the relative error of the
predicted free surface is only about 1% of the analytic solu-
tion after integration over 160 periods (Figure 5 and Table 1).
Even though the projection method is formally only first‐

Figure 4. (a) Time series of the crest and trough of the surface standing wave at the location x = 10 m at
the right sidewall over the 600 s integration. Heavy dashed line, analytical solution; solid line, FVCOM‐
NH simulation. (b) Time series of the normalized total volume in the closed domain.

Figure 5. Comparisons of FVCOM‐NH–computed and analytically derived free surface elevations with
the model run under pressure correction methods for the surface standing wave problem. Circles, the ana-
lytical solution; solid line, FVCOM‐NH–computed solution (nonhydrostatic runs with q = 0 at the sur-
face); dashed line, FVCOM‐NH–computed solutions with q = 0 in the top cell.
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order accurate in time in contrast to the second‐order time
accuracy in the pressure correction method [Armfield and
Street, 2002], the free surface elevations calculated using
the pressure correction and pressure projection (not shown)
methods agree closely with the analytical values over the
entire integration (we will return to this point in the discus-
sion). As the same free surface correction is implemented in
the semi‐implicit time‐stepping FVCOM‐NH, it also pro-
duces a similarly accurate free surface prediction using both
projection and pressure correction methods as that in the
mode split FVCOM‐NH. Except where noted, the pressure
correction method is used in the following test cases.
[23] FVCOM‐NH is solved with the exact q = 0 at the

surface through the approximation of the surface w condi-
tion in the Poisson equation. To show that this is an sig-
nificant improvement over the treatment of setting q = 0 (or
hydrostatic) within the top layer cell as used in some non-
hydrostatic models, the surface standing wave case is rerun
by assuming that q = 0 in the top layer cell. With this
treatment, the model initially performs quite well in the first
45 s (∼12 wave cycles) but subsequently develops a signifi-
cant phase error using both pressure projection and pressure
correction methods (Figure 5 and Table 1). This experiment
confirms the argument by Yuan and Wu [2004] that to set
q = 0 within the top layer cell can cause a significant phase

error in surface wave problems. The algorithm employed in
the present work avoids this issue.

3.2. Surface Solitary Waves in Flat‐ and
Sloping‐Bottomed Channels

[24] The surface solitary wave is an important feature in
coastal ocean dynamics. Here we validate the FVCOM‐NH
algorithm by investigating a propagating surface solitary
wave in two geometrical settings: (1) a flat‐bottomed
channel and (2) a linear slope (Figure 6). In the first case, the
model is compared with the analytical solution derived by
Grimshaw [1971] and Fenton [1972] and summarized by
Lee et al. [1982]. In the second case, the numerical design
follows the setup of the laboratory experiment made by
Madsen and Mei [1969].
3.2.1. Flat‐Bottomed Case
[25] Consider an inviscid surface solitary wave travelling

in a flat‐bottomed channel with a length of 40.2 m, a width
of 0.04 m, and a static depth of H0 = 0.0762 m. The free
surface elevation and the velocity fields at the initial time are
generated using a third‐order analytical solution for a wave
amplitude of z0 = 0.009144 m and a ratio of z0/H0 = 0.12.
An effective wavelength l is estimated by l = 6.9

ffiffiffiffiffiffiffiffiffiffiffi
H3

0=�
p

=
1.52 m, which is the double distance between the wave crest

Table 1. Difference Between Model‐Computed and Analytical Amplitudes and Phases of the Free Surface Elevationa

Wave Number

Projection
(q′ = 0 at the Surface)

Correction
(q′ = 0 at the Surface)

Projection
(q′ = 0 in the Top Cell)

Correction
(q′ = 0 in the Top Cell)

Dz (10−3 m) Dt (s) Dz (10−3 m) Dt (s) Dz (10−3 m) Dt (s) Dz (10−3 m) Dt (s)

20 1.68 0 1.69 0 2.85 −0.10 2.71 −0.10
40 2.25 0 2.17 0 0.60 −0.20 0.31 −0.20
60 −0.45 0.05 −0.53 0.05 2.30 −0.30 1.87 −0.30
80 0.40 0.05 0.34 0.05 2.23 −0.35 1.64 −0.35
100 2.19 0.10 0.20 0.05 1.50 −0.50 0.77 −0.50
120 −0.20 0.15 −0.39 0.10 3.89 −0.55 2.99 −0.55
140 −0.97 0.15 −1.07 0.15 1.48 −0.65 0.44 −0.65
160 1.60 0.20 1.37 0.20 4.75 −0.70 3.50 −0.70

aDz = zmodel − zanalytic and Dt = tmodel − tanalytic.

Figure 6. Sketch of geometry and initial setup of the free surface elevation in (a) flat‐bottomed and
(b) linear slope for the surface solitary wave problem. The length of the channel is 40.2 m, and only
the middle segment between 16 and 25 m is plotted to have a clear view of the slope region. The four
probe positions labeled 1–4 are shown as triangles in Figure 6b.

LAI ET AL.: A NONHYDROSTATIC FVCOM C11010C11010

8 of 23



and a point where the free surface elevation is 0.01H0 [Laitone,
1960; Jankowski, 1999].
[26] The computational domain uses the same mesh

design as that used for the surface standing wave problem. It
contains a total number of 4020 × 4 squares and 20 layers,
which corresponds to a horizontal resolution of 0.01 m and a
vertical resolution of ∼0.003 m. In the split mode explicit
approach, we chose an internal time step of 0.005 s with a
ratio to the external mode time step of 10. This produces a
Courant number of 0.46 and a theoretical phase speed (c =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g �0 þ H0ð Þp

) of 0.915 m/s. This setup is used in the fol-
lowing solitary wave test cases. The initial wave crest is
set at x = 17.2 m (Figure 6a), and the model is integrated for
10 s, a time interval during which the wave has advanced
about 9 m in the x direction and is still far enough away
from the solid end wall, such that the influence from the
boundary is minimal. This experiment is also repeated using
the semi‐implicit method using a time step of 0.05 s, and the
results remain identical.
[27] FVCOM‐NH reproduces the shape and propagating

speed of the surface solitary wave derived from the ana-
lytical solution in inviscid conditions (Figure 7). The bal-

ance between nonlinearity and dispersion leads to a permanent
free surface form symmetric around the wave crest. The
largest horizontal velocity gradients are located at the middle
of the wave slopes, which correspond to the location of
peak vertical velocities. These features are all captured by
FVCOM‐NH. No obvious free surface damping is observed
during the entire integration (Table 2). The excellent match of
the model prediction with the analytical values on the mag-
nitude and the phases of the horizontal and vertical velocities
and the undamped amplitude of the computed wave crest
demonstrate that the finite volume method used in FVCOM‐
NH is capable of simulating the Boussinesq‐type surface
solitary wave motion without explicit numerical viscosity.
3.2.2. Linear Slope Case
[28] The computational domain is the same as that used

in the flat‐bottomed case, except a linear slope with dh/dx =
0.05 (h is the height of the slope) has been added starting at
x = 20 m (Figure 6b). H0 and H1 are the undisturbed water
depths in the deep and shallow flat‐bottommed regions,
which are specified as 0.0762 and 0.0381 m, respectively.
The length of the channel is set to avoid the influence of the
solid end walls.

Figure 7. Comparison between FVCOM‐NH–computed and analytically derived free surface eleva-
tions, along‐channel velocities, and vertical velocities of the surface solitary wave at time t = 0, 2, 4,
6, 8, and 10 s for the flat‐bottomed case. Circles, analytic solution; solid line, FVCOM‐NH; dashed line,
the straight line based on the wave height at the crest at time t = 0.
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[29] The same initial free surface elevation and velocity
fields are used as in the flat‐bottomed case, which char-
acterizes a surface solitary wave derived from the analytical
solution in the deep flat‐bottomed region. The experiment
made here is to examine the capability of FVCOM‐NH to
simulate the transformation of a solitary wave from the deep
to shallow constant depth regions over a linear slope under a
condition with no wave breaking.

[30] Figure 8 shows the distribution of the nondimen-
sional free surface elevation at four probe sites labeled 1–4
(see Figure 6b) obtained from the laboratory experiment,
theoretical KDV solution, and FVCOM‐NH. The laboratory
experiment shows that the surface solitary wave propagates
from left to right, with its amplitude remaining unchanged in
the deep flat‐bottomed region (sites 1–2), growing over the
slope (site 3), and reaching a maximum in the shallow flat
region (site 4). After this single wave climbs onto the slope
and enters the shallower region, it disintegrates into a wave
train called a “fission phenomena.” These features are cap-
tured by FVCOM‐NH. The KDV solution tends to over-
estimate the amplitudes of the fission wave train.
[31] Without the inclusion of bottom friction and diffu-

sion, FVCOM‐NH reproduces the laboratory experiment
results. The model‐predicted amplitude and phase match
well with the laboratory results in the deep flat‐bottomed
region. When the wave climbs onto the slope, the front side
of the model‐predicted wave becomes steeper. The model‐
predicted changes of the waveshape and amplitude on the
slope match well with the experimental data (Table 3). The
model also resolves the fission phenomena after the water

Table 2. Differences Between Analytical and Model‐Predicted
Values of Free Surface Elevation, Horizontal Velocity, and Absolute
Vertical Velocity at Selected Simulation Timesa

Time (s) Dzmax (10
−5 m) Dumax (10

−4 m/s) ∣Dwmax∣ (10−5 m/s)

0 0 0 0
2 0.6 3.7 1.1
4 0.2 3.4 0.9
6 −0.1 3.2 0.8
8 −0.5 3.0 0.6
10 −0.5 2.8 0.5

aNegative sign indicates that the model value is lower than the analytical
value.

Figure 8. Comparison of the free surface elevations of the surface solitary waves predicted by FVCOM‐
NH (solid line), KDV theory (dashed line), and observed in the laboratory experiment (circles) at probe
sites 1, 2, 3, and 4 for the linear slope case (see Figure 6 for probe positions). Solid circles, estimated free
surface elevation when viscous effects shown by Madsen and Mei [1969]’s experiment are excluded.
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enters the shallower constant‐depth region, which is evident
at site 4. At that site, two peaks are observed. The wave
heights of these two solitary waves are ∼152% and ∼52% as
high as the initial values, respectively. These percentages are
comparable with the experimental values that are 112%
(without friction correction) and 136% (with friction cor-
rection) for the first crest and 38% (without friction cor-
rection) for the second crest and with other numerical model
results of (150%, 52%) from Woo and Liu [2001], (163%,
56%) from Hauguel [1980], and (145%, 68%) from Yuan
and Wu [2004], as well as with the KDV solution of
(167%, 75%) (Table 3).
[32] The FVCOM‐NH–computed free surface elevation,

however, leads the laboratory wave by ∼0.1 s at site 4
(Figure 8). The model‐predicted phase speed is 0.24 m/s, so
that the resulting space shift of the main (first) wave crest is
∼0.024 m. Although this shift is very small, it is notable.
Two possible reasons are proposed: (1) disintegration pro-
cess and (2) bottom friction. We compared the disintegration
process produced by the KDV solution and FVCOM‐NH
by overlapping the KDV‐computed and FVCOM‐NH–
computed free surface elevation profiles at different times
during the wave transformation (Figure 9). The KDV solution

shows that when the second and third solitary waves form,
the leading wave decreases in wavelength but increases
in wave height. Under an inviscid condition, the energy
appears to be redistributed within a train of solitary waves,
while its total value remains unchanged during the disin-
tegration process. FVCOM‐NH conserves the total energy
during the simulation, but more energy is concentrated in
the first and second solitary waves when compared with
the KDV solution. As a consequence, the FVCOM‐NH–
predicted leading solitary wave propagates at a faster speed.
Since the KDV equation is derived with the leading order
approximation and solved using numerical methods, it is
difficult to find the reason why the wave disintegration
process found in KDV and FVCOM‐NH are different.
[33] Madsen and Mei [1969] pointed out that their

experiment was made in the laboratory with frictional
damping. Using an experimental result for solitary wave
damping in a flat‐bottomed channel [Ippen and Kulin, 1955],
they estimated the viscous damping height for the leading
solitary wave observed at site 4. In theory, friction cannot
only damp the amplitude of a wave but also retard its prop-
agation speed, particularly after the wave enters the shallow
region. To verify if the model result is sensitive to friction,
we rerun the model with small constant horizontal and ver-
tical viscosity and diffusivity of Am = Kh = 1 × 10−6 m2/s and
bottom friction parameterized by the bottom roughness of
0.0005 m. By adding such small viscous effects, the model‐
predicted phase and amplitude at site 4 become close to the
experimental observations (Figure 10 and Table 3). Com-
paring the timing of the wave disintegration observed in
FVCOM‐NH runs with and without the bottom friction and
diffusion, we can see that viscous effects function as a drag
force to damp the wave amplitude and slow down its prop-
agation but do not influence the timing of the transformation
caused by the wave disintegration (Figure 11).

3.3. A “Lock Exchange” Problem

[34] Consider a rectangular tank filled by two fluids of
different density (hereafter referred to as light and heavy)

Table 3. Percentage Ratio of Primary and Second Wave Heights
Relative to the Initial Wave Height Calculated by FVCOM‐NH,
Other Nonhydrostatic Models, and Laboratory Measurements

Data Sources

Primary Wave
Height/Initial
Height (%)

Second Wave
Height/Initial
Height (%)

FVCOM‐NH 152 52
Madsen and Mei [1969],
no friction correction

112 38

Madsen and Mei [1969],
with friction correction

136 N/A

KDV 167 75
Woo and Liu [2001] 150 52
Hauguel [1980] 163 56
Yuan and Wu [2004] 145 68

Figure 9. Transformation of FVCOM‐NH–computed (solid line) and KDV‐derived (circle) surface sol-
itary waves propagating over the linear slope and onto the shallower flat‐bottomed shelf under inviscid
conditions.
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that are separated initially by a vertical gate at the center
point (Figure 12). (To compare with the previous results
obtained from spectral element and unstructured grid finite
volume models, we followed the same configuration as

Härtel et al. [2000] and Fringer et al. [2006].) The tank has
a length (L = 0.8 m), a width (W = 0.008 m), and a static
water depth (H = 0.1 m). Assuming that the density (r) is
linearly proportional to salinity (S) given by

� ¼ 999:972� 1þ 0:75� 10�3S
� �

; ð23Þ

we specified the light fluid to be freshwater (with zero
salinity) and the heavy fluid to be salt water with a salinity
of 1.3592. Then, r1 = 999.972 kg/m3 and r2 = 1000.991371
kg/m3. This gives a reduced gravity (g′) of

g0 ¼ gD�=�0 ¼ 0:01 m=s2; ð24Þ

where r0 is the reference density specified as 1000 kg/m3

and g is the gravitational acceleration constant with a value
of 9.81 m/s2.
[35] In the horizontal, the total number of triangles is

400 (x axis) × 8 (y axis). In the vertical (z axis), the domain
is uniformly divided into 100 layers. This configuration
provides a resolution of 0.002 m in the horizontal and of
about 0.001 m in the vertical. The internal time step used in
this experiment is 0.003 s for the inviscid case and 0.001 s
for the viscous case, with an internal‐external mode split
ratio of 10. Two‐dimensional (x‐z) flow was implemented
using the methods outlined before. The model is integrated
for 180 s for both inviscid and viscous (constant background
molecular viscosity) conditions.
[36] The process of gravitational adjustment begins after

the gate is removed at t = 0. The flow field is deformed from
the initial state, as the heavy fluid flows underneath the
lighter fluid and the velocity across the interface is of opposite
sign (Figure 13). The Kelvin‐Helmholtz (KH) instability
appears at a time when the velocity shear between the two
fluids is greater than the critical value of the restoring force
determined by the density gradient. As a result of instability,
a chain of well‐defined vortices develops along the interface
as the heads of the two fluids advance toward the end walls.

Figure 10. Comparison of free surface elevations of the
surface solitary waves predicted by FVCOM‐NH (solid
line) with inclusion of viscous condition and observed in
the laboratory experiment (circles) at probe sites 1, 2, 3,
and 4 for the linear slope case. Solid circle, estimated free
surface elevation when viscous effects shown by Madsen
and Mei [1969]’s experiment are excluded.

Figure 11. Transformation of FVCOM‐NH–computed surface solitary waves propagating over the linear
slope and onto the shallower flat‐bottomed shelf under inviscid (dashed line) and viscous (solid line)
conditions.
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Following the reflection from the wall, the gravity‐driven
water masses reverse the direction, and a complex flow field
that is characterized by overturning, strong mixing, and
vortices develops. The FVCOM‐NH–computed evolution
of the gravity current and the instability structures shown in
Figure 13 is in good agreement with the laboratory exper-
iment results described in previous literature and the com-
parisons with other model results given below.
[37] FVCOM‐NH can run stably with no viscosity and

conserve energy. The total energy of this system is defined
as

TE ¼ PEþ KE ¼
ZL=2

�L=2

ZH
0

�gzdxdzþ
ZL=2

�L=2

ZH
0

1

2
�V u2 þ w2

� �
dxdz;

ð25Þ

where TE, PE, and KE are the total, potential, and kinetic
energies, respectively, and V is the volume of an indi-
vidual triangular cell. With no viscosity, TE should remain

unchanged. When the gate is removed at t = 0, u = w = 0,
so that
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�gzdxdz

							
t

0
B@

1
CA=

ZL=2
�L=2

Z0

H

�gzdxdz

							
t¼0

þ
ZL=2

�L=2

Z0

H

1

2
�V u2 þ w2

� �
dxdz

							
t

2
64

3
75= ZL=2

�L=2

Z0

H

�gzdxdz

							
t¼0

¼ 1;
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where
RL=2

�L=2

RH
0
�gzdxdz

					
t¼0

¼ L
4(r1 + r2) gH2 ≈ 39.2589

(kg m2/s2). Figure 14 shows the time series of the normal-
ized dimensionless TE, PE, and KE over the integration
period. The error in TE is of O (10−4) or less (Figure 14a).
After examining the spatial discretization in FVCOM‐NH,
we believe that the O (10−4) error shown in the normalized
TE derives from the Superbee flux limiter [Roe, 1985]
implemented in the vertical advective flux calculation. This
indicates that, while this limiter performs well in controlling
overshooting of the flux at the interface, it has a minor
influence on the energy conservation. At this error level,
FVCOM‐NH guarantees that the total energy of this system
is conserved.
[38] FVCOM‐NH predicts the correct energy transfer

process in this lock exchange flow system. Starting from
zero at t = 0, KE increases rapidly as a result of the energy
transfer fromPE in the first 30 s before the gravity‐current head
reaches the left wall (Figure 14b). Then,KE drops approximate
exponentially with an increase of PE after the head hits the wall
and the returning flow occurs. The inter‐TK and PE transfer
continues and tends to reach an equilibrium state after ∼170 s.

Figure 12. Schematic of lock‐exchange case. Arrows pre-
sents the gravity currents, and dashed line indicates the
boundary between light and heavy fluids during the initial
transient.

Figure 13. Density field at (top to bottom) t = 12, 18, 27, 78, and 144 s after the vertical barrier is
removed for the inviscid nonhydrostatic simulation.
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[39] Using the energy balance theory, Jankowski [1999]
rederived the buoyancy velocity induced during the lock‐
exchange process. With no viscosity, the buoyancy velocity
U is written in the form

U ¼ 0:71

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �1
�1 þ �2

gH

r
� 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �1

�2
gH

r
¼ 0:5

ffiffiffiffiffiffiffiffi
g0H

p
; ð27Þ

where the reduced gravity g′ is defined as g(r2 − r1)/r2.
Setting a measurement site at the middle point of the
tank, we compare the model‐predicted buoyancy velocity
with equation (27). With no viscosity, the results show that
before the head of the gravity current hits the wall, the
maximum overflow and underflow velocities are 1.99 and
1.52 cm/s, which are slightly different from the theoretical

value of 1.59 cm/s (Figure 15a). Since the model detects a
variation of free surface elevation with time and in space
as well as eddies resulted from the KH instability, this is
the reason why the overflow velocity is higher than the
underflow velocity. To confirm this, we rerun the case
with a constant value of 5 × 10−6 m2/s for the horizontal and
vertical diffusivity and momentum viscosity. This hori-
zontal and vertical diffusion damps the interfacial eddies
and causes the model‐predicted buoyancy velocity to con-
verge toward the analytical value (Figure 15b). This result is
similar to the analysis of B&K to validate their laterally
averaged nonhydrostatic model.
[40] FVCOM‐NH is run using a free slip bottom boundary

condition. To compare with the direct numerical simulation
(DNS) results of Härtel et al. [2000], we run FVCOM‐NH

Figure 14. (a) Time series of total energy (sum of total potential and kinetic energies normalized by ini-
tial total energy) and (b) time series of total kinetic energy (KE, solid line) and total potential energy (PE,
dashed line) for the inviscid flow nonhydrostatic simulation.

Figure 15. Time series of surface (solid line) and bottom (dashed line) horizontal velocity values mea-
sured at the midpoint of the computational domain for (a) an inviscid nonhydrostatic model simulation
and (b) a nonhydrostatic model simulation with a constant value of 5 × 10−6 m2/s for horizontal and ver-
tical viscosity and diffusivity. Heavy solid line indicates the velocity value derived from the energy balance
theory [Turner, 1973; Jankowski, 1999].
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with the exact same setup for the case with the Grashof
number Gr = 1.25 × 10−6 [Gr = (UH/2n)2, where n is the
molecular diffusivity that is specified as 10−6 m2/s by Härtel
et al.’s and our experiments]. The FVCOM‐NH–generated
structures of interfacial vortices, shape of the intrusion front,
and speed of the gravity‐current head are almost identical
to the DNS results. For example, Figure 16 shows the dis-
tributions of contours of density at times 5T and 10T (T =ffiffiffiffiffiffiffiffiffiffiffiffi
D=2g0

p
, D =H + z and z is the free surface elevation) after

the initial transient. At both the left and right gravity current
fronts, the heads intersect with the top and bottom surfaces at
an angle of ∼60°, a similar value observed in the laboratory
experiment of Turner [1973] and also in the DNS results.
At 5T, the FVCOM‐NHmodel produces three vortices, and
the left and right gravity current frontal heads are located at
x/H = −3.17 and 3.3, respectively. At 10T, five vortices
develop, and the left and right gravity current frontal heads
move to the locations x/H = −6.47 and 6.7, respectively. The
vortex numbers, locations of the gravity current frontal
heads, and asymmetry of the speed of the left and right
gravity current frontal heads compare well with those pre-
sented in Figure 11 of Härtel et al. [2000].

3.4. An Internal Solitary Wave Shoaling
and Breaking Problem

[41] Consider an internal solitary wave of depression
propagating toward a straight beach in a rectangular domain
(Figure 17). The computational domain is configured fol-
lowingMichallet and Ivey [1999] (hereafter referred asM&I)
and B&K, with a length of 165 cm, a width of 2 cm, and
a static water depth remaining constant at 15 cm from the
origin to 102 cm and linearly decreasing from this position to

1.518 cm at the right end. This is a two‐layer fluid system
with an initial density profile given as

� ¼ �1 þD�

2
1 tanh

z� zi � �ð Þ
Dh

� �
 �
; ð28Þ

where r1 = 1000 kg/m3 is the density in the upper layer;Dr =
r2 − r1, r2 is the density of the lower layer; Dh = 1.4 cm is
the thickness of the pycnocline; zi is the depth of the interface;
and z is the initial vertical displacement of the interface.
The internal solitary wave was generated initially by setting z
equal to

� ¼ 2a0 sech2 x� x0ð Þ=2W½ �; ð29Þ

where a0 = 3.1 cm, x0 is the origin, and W is the half width
defined as

W ¼ 2h1h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a0 h2 � h1ð Þp ; ð30Þ

where h1 and h2 are the upper and lower layer thicknesses,
respectively. Equation (30) is derived based on the two‐layer
Korteweg de Vries theory by Bogucki and Garrett [1993].
Equations (28)–(29) were directly adopted from B&K.
[42] We run FVCOM‐NH for the two cases numbered 12

and 15 in Table 1 of M&I: in case I (experiment 15), r2/r1 =
1.047, h2/(h1 + h2) = 0.77, and W = 9.18 cm, and in case II
(experiment 12), r2/r1 = 1.012, h2/(h1 + h2) = 0.84, and W =
6.21 cm. The first case is aimed at examining the general
features of shoaling and breaking of the internal solitary
wave, while the second case is focused on the vortex for-
mation during breaking.

Figure 16. Distribution of the fluid density at times (top) 5T and (bottom) 10T for a nonhydrostatic
model simulation with a constant background viscosity value of 10−6 m2/s.

Figure 17. Schematic for the internal solitary wave shoaling and breaking case. The numerical experi-
ment design follows Bourgault and Kelley [2004]. The variables shown in the figure are defined in the
text.
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[43] This test case is configured with 240 × 8 triangles in
the horizontal and 100 sigma layers in the vertical. The
horizontal resolution was 1.0 cm in the flat‐bottomed region
and up to 0.5 cm over the slope. The vertical resolution
varied from 0.15 cm off the slope to 0.015 cm in the shallow
end of the domain. The model is run under viscous condi-
tions with the bottom roughness specified as 0.02 cm and
the viscosity and diffusivity set to a constant value of 10−2

cm2/s. The time step is set to 0.0005 s.
[44] With an initial interface displacement, an internal

solitary wave is generated as a result of the transfer of
potential energy to kinetic energy and then propagates toward
the slope. The wave is characterized by a density depression,
a two‐layer horizontal flow with maximum onshore velocity
of ∼7 cm/s at the surface, and double cells of vertical velocity
(Figure 18). For cases I and II, under the constant viscosity
condition, FVCOM‐NH predicts similar features of shoaling
and breaking of an internal solitary wave as that shown in
experiments 12 and 15 of M&I. Shoaling of the internal
solitary wave steepens the backside of the density depression
and makes the front side quickly withdraw from the slope in
the offshore direction (Figure 19). Bottom friction tends to
retard the fluid moving down the slope and the energy
contained in the fluid moving up the slope significantly
increases. Frontal instability develops and a vortex forms
in the backside of the interface. Breaking occurs as a result
of rapid steeping of the density profile due to intensification
of the vortex (Figure 19).
[45] FVCOM‐NH–computed velocity profiles in case II

are in reasonably good agreement with the PIV photographs
in experiment 12 of M&I. The laboratory experiment clearly
showed a sequence of the formation and evolution of the
interface vortex during shoaling. At the time at which the
wave arrives on the slope, the interface is characterized by
a clockwise flow in the upper layer and a relatively weak
anticlockwise flow in the lower layer, where both flows
converge toward the interface near the bottom (Figure 20,
top left). The anticlockwise flow in the lower layer of the
backside of the interface rapidly intensifies as the density

depression steepens (Figure 20, middle and bottom left).
Formation and evolution of these vortices are captured in the
case II experiment with constant viscosity and diffusivity by
FVCOM‐NH. The largest‐scale feature of the vortices and
the velocity amplitudes predicted by the model and observed
in the laboratory experimentmatch reasonablywell (Figure 20,
right).

4. Discussion and Summary

[46] FVCOM‐NH has been developed by adding non-
hydrostatic dynamics into the hydrostatic version of FVCOM.

Figure 18. Distributions of (top) density, (middle) horizon-
tal velocity, and (bottom) vertical velocity of the internal
solitary wave 6.5 s after the density depression is released.

Figure 19. Sequences of snapshots of the shoaling and
overturning processes of the internal solitary wave simulated
by FVCOM‐NH in viscous conditions. The viscous case is
specified by a constant molecular diffusivity of 10−6 m2/s
and bottom friction. The snapshots were taken at the same
model time as shown in Figures 3b–3h of Michallet and
Ivey [1999].
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Amajor advantage of FVCOM‐NH is that this functionality is
built on horizontal nonoverlapping triangular grids. Thus, the
method could be optimized to solve localized small‐scale
nonhydrostatic phenomena in coastal and estuarine regions
at the current level of computational power. UNTRIM and
SUNTANS are also nonhydrostatic models that employ the
unstructured grid finite volume method. FVCOM‐NH differs
from these models in many respects, including the discretiza-
tion and grid stencils, vertical coordinate system, and the
nonhydrostatic algorithms.
[47] FVCOM‐NH employs a fractional step method with

options for two approaches: the pressure projection and
pressure correction methods. When using the split mode
explicit time‐stepping method, we propose a new approach
to treat issues that arise when fractional step methods are
used in concert with a mode splitting time‐stepping frame-
work. The sequence of steps in this new approach is in fact
opposite to that used in other mode split hydrostatic and
nonhydrostatic models. In our method, the free surface

determined in the external mode update will be inversely
corrected by including the effect of the nonhydrostatic
pressure at the current time step. This free surface cor-
rection is implemented in the semi‐implicit FVCOM‐NH
when using either the projection or the pressure correction
method. With these new treatments, we are able to establish
a nonhydrostatic algorithm that ensures a consistent flow
field and consequently improved mass conservation prop-
erties. On the basis of our tests, we found that the free
surface fields calculated using both the projection and the
pressure correction methods are quite similar regardless of
whether the split mode explicit or the semi‐implicit time‐
stepping method is used. This was somewhat surprising as
the projection method is formally only first‐order accurate in
time while the pressure correction method is second‐order
accurate [Armfield and Street, 2002]. One possible reason is
that in the split mode explicit scheme, FVCOM‐NH includes
the vertically integrated nonhydrostatic pressure gradient in
the external mode in both the projection and pressure cor-

Figure 20. Comparisons between (left) FVCOM‐NH–simulated and (right) laboratory‐observed veloc-
ity vectors at three select times. The time listed on the bottom right corner of each frame is relative to the
time at which the wave (density depression) arrives on the slope. The PIV images of the laboratory‐
observed velocity vector shown in Michallet and Ivey [1999] were kindly provided by H. Michallet,
University of Grenoble, 2007. The model results used for this comparison were obtained for the case with
constant molecular diffusivity and bottom friction.
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rection methods, which may improve the accuracy of the
predicted intermediate velocity field and the intermediate free
surface in the projection method. Correcting the free surface
implicitly in both methods after obtaining the divergence‐free
velocity field helps correct the error in the free surface
calculation, hence improving the numerical accuracy in
the projection method. The same free surface correction is
implemented in the semi‐implicit time‐stepping scheme,
where it provides a similar improvement.
[48] FVCOM‐NH has been validated through a set of

idealized nonhydrostatic problems. The surface standing
wave problem has been a benchmark test case for many
other nonhydrostatic models [Casulli and Stelling, 1998;
Koçyigit et al., 2002; Zijlema and Stelling, 2005; Kanarska
et al., 2007]. Casulli [1999] found that the projection
method used in his semi‐implicit nonhydrostatic model can
cause severe free surface damping. Zijlema and Stelling
[2005] attributed this to the first‐order accuracy error in
the pressure splitting inherent in this method. For this rea-
son, recent nonhydrostatic model development efforts pre-
fer to use the pressure correction method [Kanarska et al.,
2007; Fringer et al., 2006]. Our analysis in the surface
standing wave case found that the free surface damping and
mismatch found by others are probably partly attributed to
their specific treatment of the surface boundary condition
for q. For example, the nonhydrostatic pressure equation in
UNTRIM [Casulli, 1999;Casulli and Zanolli, 2002] is solved
with an assumption that q = 0 in the computational cell
nearest the free surface. This simplification is also used in
many other nonhydrostatic models [e.g., Zhou and Stansby,
1999; Stansby and Zhou, 1998;Koçyigit et al., 2002;Deponti
et al., 2006]. This approach, as pointed out by Yuan and Wu
[2004] and also confirmed in our experiment, can lead to a
phase error in the free surface elevation. FVCOM‐NH is
solved with the condition of q = 0 at the surface, which is able
to avoid the occurrence of such phase error.
[49] A nonhydrostatic version of ROMS [Haidvogel et al.,

2000] has been developed recently by Kanarska et al.
[2007]. Using the pressure correction method, the external
mode in the nonhydrostatic version of ROMS is solved with
the inclusion of nonhydrostatic pressure but with the assump-
tion that q can be treated as a “slowly varying” force which
does not vary over an internal time step. No correction ismade
for the free surface elevation after q and the divergence‐free
velocity are determined at the internal mode step. This may be
the reason why the computed amplitude and phase of the
surface standing wave shown by Kanarska et al. [2007]
deviate from the analytical solution after 20 s (approxi-
mately four oscillation cycles), even though the grid reso-
lution in their experiment is higher than that used in the
FVCOM‐NH simulation presented here. Excellent agree-
ment between the FVCOM‐NH–computed and the analyt-
ical free surface elevations in both surface standing and
solitary waves in a flat‐bottomed channel indicates that
the variation of the nonhydrostatic pressure must be taken
into account in calculating the free surface elevation in
the external mode. In the split mode explicit approach, the
numerical errors that occur due to fixing nonhydrostatic
pressure during the external mode and artificial adjustment
for 2‐D to 3‐D are corrected by taking the external mode
field as the intermediate state and recalculating the free

surface elevation and vertically averaged velocity by solving
the continuity equation with the nonhydrostatic divergence‐
free velocities.
[50] FVCOM‐NH demonstrates conservation of total

energy in inviscid conditions for the lock exchange flow
problem and produces the same results for interface insta-
bility, vortex formation and evolution, and shape and speed of
the gravity currents as in DNS. The lock exchange flow
experiment was also performed by Fringer et al. [2006] using
SUNTANS, a primitive equation ocean model which solves
finite volume flux discretization on orthogonal unstructured
grids. SUNTANS was run with a free surface and a no‐slip
bottom boundary condition. Their results were compared
with the no‐slip DNS results of Härtel et al. [2000], in which
the no‐slip condition was applied to both top and bottom
boundaries. DNS results exhibit a strikingly symmetric den-
sity field, which is not present in SUNTANS simulation.
The vortical structures predicted by SUNTANS also differ
from the DNS results, which was attributed to the first‐order
upwind advection scheme used in SUNTANS [Fringer et al.,
2006]. The lock exchange flow problem was also used as a
benchmark test case for the nonhydrostatic version of ROMS.
In a 2‐D free‐slip condition case, the ROMS‐NH‐generated
vortex structures (shapes and numbers) differ significantly
from results computed using DNS and FVCOM‐NH.
[51] FVCOM‐NH has been successfully used to capture

the shoaling and breaking process of internal solitary
waves observed in the laboratory. The comparison between
FVCOM‐NH under inviscid (not shown here) and viscous
conditions suggests that the wave‐breaking process and the
formation of a vortex near the bottom during wave shoaling
is sensitive to the bottom friction. FVCOM‐NH results
for the internal solitary wave case are very similar to those
predicted by B&K’s nonhydrostatic finite difference model.
The same experiment was also conducted using the
Massachusetts Institute of Technology general circulation
model (MITgcm) and the Bergen Ocean Model (BOM) by
Berntsen et al. [2006]. MITgcm is a z coordinate structured
grid nonhydrostatic finite volume model that uses a shaved
cell approach to treat near‐bottom flow over sloping‐bot-
tomed topography [Marshall et al., 1997a, 1997b], and
BOM is a sigma coordinate nonhydrostatic finite difference
model [Berntsen, 2000]. Berntsen et al. [2006] found that
the shoaling and breaking process predicted by MITgcm in
the case without bottom friction looked like BOM’s results
with bottom friction. They suggest that this is probably
caused by numerical errors created in the finite volume
treatment of the step‐bottom topography in the z coordinate
model system.
[52] In summary, these validation experiments suggest that

the newly developed nonhydrostatic version of FVCOM
(FVCOM‐NH) is capable of resolving complex nonhydro-
static phenomena in coastal and estuarine waters with high
numerical accuracy, mass and energy conservation, and rea-
sonable computational efficiency.

Appendix A: Discretization of the Poisson Equation
for Nonhydrostatic Pressure

[53] The nonhydrostatic version of FVCOM (FVCOM‐
NH) is developed by adding a NH module into FVCOM.
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The finite volume methods used to solve FVCOM‐NH are
the same as for FVCOM except for the Poisson equation (17)
for the nonhydrostatic pressure q′ A grid convergence test
based on an analytic solution of a Poisson problem in a unit
square was conducted for equation (17). The results show that
the log‐log plot of rms error versus grid spacing has an
average slope of about 2.0. This means that as grid resolution
increases, the numerical error decreases at a rate of 10−2,
so that the solution remains at second‐order accuracy as
FVCOM. A detailed discussion on the accuracy of unstruc-
tured grid algorithms used in FVCOM was also given via the
comparison with the structured grid finite difference model
ROMSs by Huang et al. [2008]. In Appendix A, a brief
description of the discretization of the Poisson equation is
given.
[54] Equation (17) is written here as
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all other tracer variables in FVCOM, q′ is placed at the nodes
of each triangle (Figure 1). Defining that N (i = 1,…, N) and
M (j = 1, …, M) are the total number of centroids and nodes
in the computational domain and integrating equation (A1)
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where Wj is the area of the control volume at the center of the
jth node, k is an index of the vertical s layer varying from 1 to
kb,Dk is an operator defined as the difference of the variable
at kth and (k + 1)th s layers, and the overbar “−” represents the
average over the area Wj.
[55] A1 and A2 are functions of D = z + H that are known

at the (n + 1)th time step after the intermediate free surface
elevation is determined by the external mode integration.
The flux terms on the left‐ and right‐hand sides (LHS and
RHS) of equation (A2) are discretized as follows:

[56] Term 1 on LHS: Defining that
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where the subscript i indicates the ith centroid, k + 1/2 is the
midlayer of k and (k + 1)th s layers, 1, 2, and 3 are the
indices of the three nodes of the ith triangle counted clock-
wise and Wi is the area of the ith triangle. Substituting (A3)
and (A4) into the first term of equation (A2) yieldsI
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where NE is the total number of triangles contained in the jth
control volume with a center at the node point j, [dxi(1),
dyi(1)] and [dxi(2), dyi(2)] represent the x and y lengths of the
edge through the ith centroid for the jth control volume.
[57] Term 2 on LHS: Defining that ds(k) = s(k − 1/2) −

s(k + 1/2), the discrete form of the second term is given as
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where the subscript j is the jth node that is the center point of
the jth control volume.
[58] Term 3 on LHS: Defining that qi,k′ = [qi,k′ (1) + qi,k′ (2) +

qi,k′ (3)]/3 in which 1, 2, and 3 are the indices of the three
nodes of the ith triangle, we have
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Term 4 on LHS: Defining that �k = (Dk‐1 (s) + Dk(s)), we
have

I
lWj

A1dy�
I
lWj

A2dx

0
B@

1
CADk q0ð Þ

¼
XNE
i¼1

A1;i;kþ1=2 dyi 1ð Þ þ dyi 2ð Þ½ � � A2;i;kþ1=2 dxi 1ð Þ þ dxi 2ð Þ½ �� �

� Dk �ð Þ
�k

qi;k�1=2
0 þ Dk�1 �ð Þ

�k
�Dkþ1 �ð Þ

�kþ1

� ��

� qi;kþ1=2
0 �Dk �ð Þ

�kþ1
qi;kþ3=2
0

�
: ðA8Þ

Term 1 on RHS:
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Term 3 on RHS has the same form as shown in equation (A2).
[59] Substituting equations (A3)–(A10) into equation (A2)

produces a set of linear equations in the form of

Aq0 ¼ b; ðA11Þ

where A is a sparse coefficient matrix with a dimension of
Nnode (the node number) × Klayer (the vertical layer num-
ber) and b is the discrete array constructed from the right‐
hand side of source terms in equation (A2). The resulting
matrix is diagonally dominant and asymmetric with a gen-
eral form. Three steps are used to solve equation (A11).
First, FVCOM‐NH is parallelized using the same efficient
MPI‐based framework employed in the hydrostatic version
of FVCOM [Cowles, 2008]. Second, a scalable sparse
matrix solver library (PETSc) [Balay et al., 2007] is im-
plemented into the code to support the parallel computing
environment for matrix solvers. Third, we employ an
algebraic multigrid preconditioner using the HYPRE soft-
ware library [Falgout and Yang, 2002] that can be inter-

faced directly to the PETSc iterative solver and provides
further reduction in computational costs for solution of
equation (A11).

Appendix B: Mode Split and Semi‐Implicit Time
Stepping Algorithms in FVCOM‐NH

[60] In the mode split method, the governing equations for
the external mode are given as
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where the definition of Gx and Gy are given by Chen et al.
[2003]; (tsx, tsy) and (tbx, tby) are the x and y components
of surface wind and bottom stresses, respectively; and the
overbar denotes vertical integration.
[61] Equations (B1)–(B2) are solved using the modified

fourth‐order Runge‐Kutta time‐stepping scheme as in
FVCOM [Chen et al., 2003, 2006b]. This is a modified
four‐stage time‐stepping method with second‐order accu-
racy [Dick, 1994]. Over the four‐stage integration from n to
n + 1, q is given by its value at the nth time step and remains
unchanged. Because of the lack of variation of q during the
integration, the free surface elevation and vertically inte-
grated velocity at the (n + 1)th time step are treated as the
intermediate values and then corrected inversely through the
2‐D to 3‐D adjustment after q and the nonhydrostatic 3‐D
velocity at the (n + 1)th time step are determined.
[62] The external and internal mode consistency adjust-

ment in FVCOM‐NH is treated differently from the proce-
dure used in the hydrostatic version of FVCOM. Under the
hydrostatic approximation, with shorter time step, u and
� calculated by the external mode are more accurate than

1/D
R�
�H

u d z and 1/D
R�
�H

n d z calculated from the internal

mode. In this case, the internal velocity is adjusted to the
external velocity at each time step to ensure the mode split
consistency [Chen et al., 2006b]. Under the nonhydrostatic
approximation, however, the external mode only provides
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the intermediate free surface elevation for the use in
determining the surface boundary condition of w and total
water depth at the intermediate time step in the pressure
Poisson equation. The true free surface elevation and (u, �)
at the (n + 1)th time step is determined inversely by the
divergence‐free velocities (u, v, w) under the fully non-
hydrostatic condition as follows. First, define

unþ1 ¼
Z0

�1

unþ1d� and �nþ1 ¼
Z0

�1

�nþ1d�: ðB4Þ

Second, substituting un+1 and � n+1 into the continuity
equation (B1), we can obtain zn+1 by solving a fully implicit
discrete equation given as
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Equation (B5) results in a 2‐D asymmetric and diagonally
dominant matrix with a stencil equal to the sum of the sur-
rounding node points contained in a control volume, which
can be solved efficiently.
[63] This approach avoids the artificial adjustment that is

required in the hydrostatic version of FVCOM or other
time‐split models. Because the true values of zn+1, un+1, and
� n+1 are determined using the 3‐D divergence‐free
velocity under the fully nonhydrostatic conditions, the
volume fluxes for internal and external modes are matched
exactly.
[64] In the semi‐implicit time‐stepping method, we follow

the algorithm used by Casulli and Cattani [1994]. The
horizontal momentum equations (1)–(2) are given as
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in which the free surface gradient is given by a weight
average of its values at nth and (n + 1)th time steps. In this
approach, the continuity equation is defined as

@�

@t
þ 1� �ð Þ @ uDð Þn

@x
þ �

@ uDð Þnþ1

@x

þ 1� �ð Þ @ vDð Þn
@y

þ �
@ vDð Þnþ1

@y
¼ 0: ðB8Þ

Rewrite equations (B6)–(B7) as

@uD

@t
¼ XFLUXn � g�D

@�nþ1

@x
þ 1

D

@

@�
Km

@u

@�

� �
; ðB9Þ

@vD

@t
¼ YFLUXn � g�D

@�nþ1

@y
þ 1

D

@

@�
Km

@v

@�

� �
; ðB10Þ

where XFLUX and YFLUX are the sum of all explicit terms
of advection, free surface gradient, atmospheric pressure
gradient, hydrostatic and nonhydrostatic pressure gradients,
Coriolis force, and horizontal diffusion in the x and y
momentum equations, respectively.
[65] Integrating equations (B9)–(B10) from s = −1 to s = 0

yields

uDð Þnþ1 ¼ uDð ÞnþDt

Z0

�1

XFLUXnd�� g�DDt
@�nþ1

@x

þDt
�nsx � �nbx

D
; ðB11Þ

vDð Þnþ1 ¼ vDð ÞnþDt

Z0

�1

YFLUXnd�� g�DDt
@�nþ1

@y

þDt
�nsy � �nby

D
; ðB12Þ

where (tsx
n , tsy

n ) and (tbx
n , tby

n ) are the nth time x and y com-
ponents of surface wind and bottom stresses, respectively.
Substituting equations (B11)–(B12) into equation (B8) pro-
duces a 2‐D asymmetric and diagonally dominant matrix
similar to that produced by equation (B5) for the inverse free
surface updating in the split mode explicit method. This
matrix is solved using PETSc with preconditional HYPRE
software library.
[66] After zn+1 is calculated, substituting it into equations

(B9)–(B10), we can update the (n + 1)th velocity by solving
it implicitly for the vertical diffusion terms. Like the split
mode explicit method, we also inversely correct the free
surface based on equation (B8) after the (n + 1)th diver-
gence‐free velocity field is updated by the nonhydrostatic
pressure q′.
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