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a b s t r a c t

The structured-grid surface wave model SWAN (Simulating Waves Nearshore) has been converted into an
unstructured-grid finite-volume version (hereafter referred to as FVCOM-SWAVE) for use in coastal ocean
regions with complex irregular geometry. The implementation is made using the Flux-Corrected Trans-
port (FCT) algorithm in frequency space, the implicit Crank–Nicolson method in directional space and
options of explicit or implicit second-order upwind finite-volume schemes in geographic space.
FVCOM-SWAVE is validated using four idealized benchmark test problems with emphasis on numerical
dispersion, wave-current interactions, wave propagation over a varying-bathymetry shallow water
region, and the basic wave grow curves. Results demonstrate that in the rectangular geometric domain,
the second-order finite-volume method used in FVCOM-SWAVE has the same accuracy as the third-order
finite-difference method used in SWAN. FVCOM-SWAVE was then applied to simulate wind-induced sur-
face waves on the US northeast shelf with a central focus in the Gulf of Maine and New England Shelf.
Through improved geometric fitting of the complex irregular coastline, FVCOM-SWAVE was able to
robustly capture the spatial and temporal variation of surface waves in both deep and shallow regions
along the US northeast coast.

Published by Elsevier Ltd.

1. Introduction

SWAN (Simulating WAves Nearshore) is the third-generation
surface wave model developed originally by Booij et al. (1999)
and improved through a team effort (SWAN Team, 2006a). This
model considers the characteristics of surface waves in shallow
water by solving the wave action balance equation with inclusion
of dissipation from bottom friction, triad and quadruplet wave–
wave interactions, and shallow water wave-breaking (SWAN Team,
2006b). SWAN has become one of the most popular surface wave
models presently available and it is widely used for coastal ocean
wave simulations, engineering applications and surface wave fore-
casts. SWAN is discretized using a curvilinear-structured grid and
solved using fully implicit finite-difference algorithms. By applica-
tion of a coarse-fine grid nesting approach, SWAN can be set up
with variable grids in deep and shallow ocean regions to provide
high quality simulations of surface waves in the nearshore region.

Hsu et al. (2005) recently converted SWAN into a finite-ele-
ment-based unstructured-grid version (hereafter referred to as
FE-WAVE) for use in irregular coastal settings characterized by
numerous barriers, islands, inlets and narrow navigation channels.
Discretizing the wave action balance equation using a non-over-
lapping triangular mesh, the Taylor-Galerkin finite-element meth-
od provides an accurate geometric fitting of complex coastlines,
which makes FE-WAVE more suitable for nearshore applications.
Model-model comparisons of simulated waves generated by Ty-
phoon Bilis in 2000 in the coastal region of Taiwan Strait clearly
show that with better resolution of the complex coastal geometry,
FE-WAVE provides a more realistic and accurate simulation of sig-
nificant wave heights and dominant wave periods than is possible
using the standard SWAN formulation (Hsu et al., 2005).

As an alternative unstructured-grid algorithm, the finite-vol-
ume method has recently received more attention in the coastal
ocean modeling community (Casulli and Lang, 2004; Chen et al.,
2003; Fringer et al., 2006). Dividing the computational domain
by using a triangular mesh and solving the equations with flux-
based discrete algorithms, this method takes advantage of finite-
difference methods for simple code structure and computational
efficiency and finite-element methods for geometric flexibility.
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FVCOM (an unstructured-grid finite-volume coastal ocean model)
is a state-of-the-art finite-volume coastal ocean model that has
been widely used in coastal and estuarine regions (Chen et al.,
2006a; Chen et al., 2006b; Chen et al., 2007). An integrated coastal
ocean model system has been developed around FVCOM for the
purpose of coastal environmental prediction and management
(described at http://fvcom.smast.umassd.edu/). Implemention of
an unstructured-grid surface wave model within this system
makes it more suitable and reliable for application to inundation
simulations (e.g., flooding due to storm surge) and studies of fish-
ery larval recruitment problems, in which the surface waves are
directly related to sediment resuspension at the ocean bottom.

By implementing finite-volume algorithms within SWAN, we
have converted SWAN into an unstructured-grid finite-volume
model (hereafter referred to as FVCOM-SWAVE). This model pro-
vides an alternative option for unstructured-grid wave models for
the coastal ocean. FVCOM-SWAVE can also be coupled with any tri-
angular mesh-based unstructured-grid ocean models for the study
and simulation of current-wave interactions. This paper describes
the finite-volume algorithms used in FVCOM-SWAVE, followed by
a series of validation experiments and an example showing the
application of the model to the US northeast coastal ocean.

2. Governing equation and discrete methods

2.1. Spectral action balance equation

The evolution of wave spectra is determined by the wave action
density spectrum balance equation expressed as

@N
@t
þr � ½ð~Cg þ ~VÞN� þ

@CrN
@r

þ @ChN
@h
¼ Stot

r
ð1Þ

where N is the wave action density spectrum; t is the time; r is the
relative frequency; h is the wave direction; Crand Ch are the wave
propagation velocities in spectral space (r, h); ~Cg ¼ @r=@~k is the
group velocity; k

*

is the wave number vector; ~V is ambient water
current vector, and r � () is the horizontal divergence operator in
geographic space. In the Cartesian coordinates, r � () = @()/@
x + @()/@y, while in spherical coordinates, we denote k as longitude
and u as latitude, implying r � () = @()/@k + cos�1u @[cosu()]/@u. Stot

is the source-sink term given as

Stot ¼ Sin þ Snl3 þ Snl4 þ Sds;w þ Sds;b þ Sds;br ð2Þ

where Sin is the function for the wind-induced wave growth; Snl3 is
the nonlinear transfer of wave energy due to three-wave interac-
tions; Snl4 is the nonlinear transfer of wave energy due to four-wave
interactions; Sds,w is the wave decay due to white capping; Sds,b is
the wave decay due to bottom friction; and Sds,br is the wave decay
due to depth-induced wave breaking. Detailed descriptions of each
of these terms are given in the SWAN technical manual (SWAN
Team, 2006b) and not included here.

2.2. Discretization

Following the discrete approach used in FE-WAVE (Hsu et al.,
2005), we split Eq. (1) into four equations given as

Nnþ1
4 � Nn

Dt
þ @ðCrNÞ

@r
¼ 0 ð3Þ

Nnþ2
4 � Nnþ1

4

Dt
þ @ðChNÞ

@h
¼ 0 ð4Þ

Nnþ3
4 � Nnþ2

4

Dt
þr � ½ð~Cg þ ~VÞN� ¼ 0 ð5Þ

Nnþ1 � Nnþ3
4

Dt
¼ Stot

r
ð6Þ

where n denotes the nth time step, and Dt is the time interval for
the numerical integration. Eqs. (3) and (4) describe the change of
action density spectrum in spectral space. They are solved by the
Flux Corrected Transport method (FCT) (Boris and Book, 1973;
Hsu et al., 2005) and the Crank–Nicolson method (Crank and Nicol-
son, 1947), respectively. Eq. (5) describes the propagation of the
waves in geographic space. It is solved by either an explicit finite-
volume upwind advection scheme (directly adopted from FVCOM)
or a semi-implicit finite-volume upwind advection scheme. Eq. (6)
represents the growth, transfer and decay of the waves driven by
the source terms. It is solved by a semi-implicit integration scheme
as used in the WAM model (WAMDI Group, 1988) and WAVE-
WATCH III model (Tolman, 2002). A brief description of the discrete
algorithms used to solve Eqs. (3)–(6) is given below.

2.2.1. Action density in frequency space
The FCT method, proposed first by Boris and Book (1973), is a

conservative, positive discrete algorithm suitable for steep-gradi-
ent problems without dispersively generated oscillations. The algo-
rithm was used by Hsu et al. (2005) in FE-WAVE and also is
adopted here to solve Eq. (3) in FVCOM-SWAVE. The discrete ap-
proach used in the FCT method consists of transport, anti-diffusion
and correcting stages, as given by

Nnþ1=4
jr

¼ N�jr � ðA
�
jrþ1=2 � A�jr�1=2Þ; ð7Þ

where jr denotes the jth frequency and the resolution is specified as
a ‘‘constant-relative-frequency” defined as D r/r. N�jr represents the
action density at the transport stage calculated by

N�jr ¼ Nn
jr
� Dt

Dr
ðU1

jrþ1=2 �U1
jr�1=2Þ ð8Þ

where U is the flux defined as

U1
jrþ1=2 ¼ Nn

jr

Cr;jrþ1 þ jCr;jrþ1j
2

þ Nn
jrþ1

Cr;jrþ1 � jCr;jrþ1j
2

ð9Þ

U1
jr�1=2 ¼ Nn

jr�1
Cr;jr þ jCr;jr j

2
þ Nn

jr

Cr;jr � jCr;jr j
2

ð10Þ

and the superscript ‘‘1” denotes the first stage.
A�jrþ1=2 and A�jr�1=2 are limited anti-diffusion fluxes defined as

A�jrþ1=2¼ sgnðAjrþ1=2Þmax 0;min jAjrþ1=2j;sgnðAjrþ1=2ÞðN�jrþ2�N�jrþ1Þ;
hn

�sgnðAjrþ1=2ÞðN�jr�N�jr�1Þ
io

ð11Þ

A�jr�1=2¼ sgnðAjr�1=2Þmax 0;min jAjr�1=2j;sgnðAjr�1=2ÞðN�jrþ1�N�jr Þ;
hn

�sgnðAjr�1=2ÞðN�jr�1�N�jr�2Þ
io

ð12Þ

where

Ajrþ1=2¼
Dt
Dr
ðU2

jrþ1=2�U1
jrþ1=2Þ; Ajr�1=2¼

Dt
Dr
ðU2

jr�1=2�U1
jr�1=2Þ; ð13Þ

U2
jrþ1=2¼Nn

jrþ1
Cr;jrþ1þCr;jr

2
; U2

jr�1=2¼Nn
jr

Cr;jr�1þCr;jr
2

; ð14Þ

and superscript ‘‘2” denotes the second stage and sgnðAjrþ1=2Þ ¼

1; if Ajrþ1=2 P 0
�1; if Ajrþ1=2 < 0

�
.

2.2.2. Action density in directional space
The action density at the (n + 2/4)th time step in wave direc-

tional space is calculated using a second-order accurate implicit
Crank–Nicolson scheme (Crank and Nicolson, 1947) given by

Nnþ2=4
jh

¼ Nnþ1=4
jh

þ a
Dt

2Dh
ðChNÞnþ2=4

jh�1 � ðChNÞnþ2=4
jhþ1

h i
� ð1� aÞ

� Dt
2Dh

ðChNÞnþ1=4
jhþ1 � ðChNÞnþ1=4

jh�1

h i
ð15Þ
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where jh denotes the jth direction interval and the resolution is
specified by Dh. a is a weighting factor with a default value of 0.5.

2.2.3. Action density in geographic space
Eq. (5) is solved numerically using the unstructured-grid finite-

volume approach implemented in FVCOM (Chen et al., 2003; Chen
et al., 2006b) for both Cartesian and spherical coordinates. The flux
form of Eq. (5) in a control volume shown in Fig. 1 can be written as

Nnþ3=4 ¼ Nnþ2=4 � Dt
X

Xln

i¼1

Cn;iNli Dli: ð16Þ

Here, X is the area of the control volume indicated by the dark
shaded area in Fig. 1, li (i = 1,ln) is the perimeter of X, ln is the number
of edges of X and Cn,i is the component of~Cg þ~V normal to li. Eq. (16)
is solved by either the explicit upwind scheme or semi-implicit up-
wind scheme. Detailed descriptions of these two solvers are given
in the Appendix; the calculation of the action density at the edge of
the control volume is summarized here. In the explicit approach,

Nl ¼
Nnþ2=4

A þ DrA
XA

PlXA ;n

j¼1
Nnþ2=4

lXA ;j
DlXA ;j for Cn > 0

Nnþ2=4
B þ DrB

XB

PlXB ;n

j¼1
Nnþ2=4

lXA
DlXA ;j for Cn < 0

;

8>>>>><
>>>>>:

ð17Þ

where, respectively, Nn
A and Nn

B are the nth time step action densities
at nodes of A and B; XA (light dashed area in Fig. 1) and XB are the
total area of triangles with central nodes at A and B; lXA ;j (j=1, lXA ;nÞ
and lXB ;j (j=1, lXB ;nÞ are the perimeters of XAand XB, lXA ;n, lXB ;n are the
number of edges of XA and XB; and DrAand DrB are the distances
from node A and node B to the centroids of triangles connected to
nodes A and B. Cn > 0 refers to the outward direction of the control
volume. This is the second-order approximate advection scheme
used to solve the tracer equation in FVCOM.

In the semi-implicit approach, we have

Nl ¼

Nnþ3=4
A þ DrA

XA

PlXA ;n

j¼1
Nnþ2=4

lXA ;j
DlXA ;j for Cn > 0

Nnþ3=4
B þ DrB

XB

PlXB ;n

j¼1
Nnþ2=4

lXA
DlXA ;j for Cn < 0

8>>>>><
>>>>>:

: ð18Þ

Substituting Eq. (18) into Eq. (16) results in a 2D asymmetric and
diagonally dominant matrix with a stencil equal to the sum of the
surrounding node points contained in a control volume. It can be
solved efficiently using a scalable sparse matrix solver library
(PETSc) (Balay et al., 2007) implemented with a high performance
pre-conditional HYPRE software library (HYPRE Team, 2001). This
method of sparse matrix solution was implemented to solve the
Poisson equation for the non-hydrostatic version of FVCOM (Lai
et al., 2008).

2.2.4. Action density (Nn+1) related to source terms
Eq. (6) is solved using the same second-order, semi-implicit,

centered-difference scheme as is implemented in WAM and
WAVEWATCH-III. This is

Nnþ1 ¼ Nnþ3=4 þ Dt
2r
ðSnþ1 þ SnÞ ð19Þ

where Sn+1 and Nn+1 are nonlinearly coupled to each other. A de-
tailed description of this algorithm is given by the WAMDI Group
(1988) and Tolman (2002).

FVCOM-SWAVE is parallelized using the MPI framework as
implemented in FVCOM, and thus can take advantage of the sub-
stantial computing power of modern multi-processor machines
(Cowles, 2008). This version retains all options available for
source terms in the SWAN model. The essential difference be-
tween the two models is in solving for wave propagation in geo-
graphic space by the unstructured-grid finite-volume algorithm.
However, as FE-WAVE, as developed by Hsu et al. (2005), also
uses the same triangular mesh approach as described in
FVCOM-SWAVE, these two versions can both be run using the
same grid, but with different spatial discretization (finite-volume
and finite-element) methods.

3. Validation experiments

Four idealized benchmark tests were used to validate FVCOM-
SWAVE with the standard SWAN model by Booij et al. (1999).
These tests were designed to investigate the numerical diffusion
of the discrete schemes, and to examine the properties of wave-
current interactions, and wave propagation over varying shallow
water topography. We also did standard growth curve analysis
in idealized fetch-limited cases, following the SWAMP Group
(1985), with a constant wind blowing seaward off a long straight
coastline (as shown in Booij et al. (1999)). The same procedures
are used to compare FVCOM-SWAVE and SWAN in all four ideal-
ized tests. Comparisons are made directly with the standard
SWAN model, which has been previously very carefully compared
and calibrated to growth curve data (by Booij et al. (1999)).

Inter-model or model-data comparisons in this text were made
based on both RMS and RMS (%). For the significant wave height,
Hs,the RMS (%) is defined as

RMS¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

XN

i¼1

½Hs;mðiÞ�Hs;oðiÞ�2
vuut ð20Þ

RMSð%Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

XN

i¼1

�
Hs;mðiÞ�Hs;mjmin

Hs;mjmax�Hs;mjmin
� Hs;oðiÞ�Hs;ojmin

Hs;ojmax�Hs;ojmin

�2
vuut : ð21Þ

In the model-data comparison cases, Hs,m and Hs,o are the model-
predicted and observed Hs, respectively. Here, N is the sample num-
ber, and the subscripts ‘‘max” and ‘‘min” indicate maximum and
minimum. For the dominant wave period, RMS (%) is calculated
by replacing Hs by Tp (dominant peak wave periods) in expression
(21). In these inter-model comparison cases, the subscript ‘‘m” rep-
resents FVCOM-SWAVE and ‘‘o” represents SWAN.

Fig. 1. Schematic of the unstructured triangular grid used for geographical spatial
discretization in FVCOM-SWAVE. Definitions of variables are provided in the text.
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3.1. Numerical diffusion

Consider a harmonic, long-crested wave propagating through a
gap into a square computational domain with dimensions
10 � 10 km in deep water (Fig. 2). The open gap is located in the
lower left corner of the domain, so that the wave propagates along
the diagonal at an angle of 45� with respect to the positive x-axis (x
is the east–west coordinate which is positive in the eastward direc-
tion). This harmonic wave is simulated using a Gaussian-shaped
frequency spectrum with a peak frequency of 0.1 Hz, a standard
deviation of 0.01 Hz and a resolution defined as 3% of the relative
frequency. The significant wave height at the gap is 1.0 m, and
the long crest of the wave is calculated using an assumed cos500(h)
directional distribution.

The computational domain is tesselated with a square grid for
SWAN and with right triangles for FVCOM-SWAVE. The right trian-
gles are constructed by dividing each square along its diagonal line.
The horizontal resolution for SWAN is 100 m, which is the same for
FVCOM-SWAVE, where the horizontal resolution is defined using
the shortest edge of a computational cell. The resolution in direc-
tional space is 0.5�. Here, the time step in SWAN and FVCOM-
SWAVE is specified to maintain stability.

For this case, SWAN was run using three different discrete
schemes: (a) the first-order, backward space and backward time
scheme for stationary waves (BSBT), (b) the second-order upwind
iteration scheme for stationary waves (SORDUP) (Rogers et al.,
2002), and (c) the third-order Stelling–Lendrertse scheme.
FVCOM-SWAVE was run using both explicit and implicit second-
order finite-volume upwind schemes.

The SWAN and FVCOM-SWAVE significant wave height distri-
butions are compared in Fig. 2. The width of the spreading of the
significant wave height field is used as an index for numerical dif-
fusion. In general, the SORDUP result has the least numerical diffu-
sion, whereas BSBT gives the largest numerical diffusion.

Respectively, at distances of 1 and 5 km in the x- and y- axes away
from the source, the width of the wave height field is 1.75 and
2.5 km for the first order BSBT, 1.0 and 1.5 km for the second order
SORDUP, 1.5 and 1.75 km for the third-order Stelling–Lendretse
scheme, and 0.75 and 1.75 km for FVCOM-SWAVE. At these two
locations, FE-WAVE gives the same widths as FVCOM-SWAVE. If
only the non-stationary numerical schemes are considered, we find
that the second-order finite-volume upwind scheme used in
FVCOM-SWAVE can reach the same level of numerical accuracy
as the third-order Stelling–Lendretse scheme, and can exceed this
level of accuracy in the region close to the gap. In this special case,
the effective horizontal resolution is the same for both SWAN and
FVCOM-SWAVE, because the computational cells have equivalent
area. Because BSBT is a first-order approximation, it is not surpris-
ing that this scheme (used in SWAN) generates the largest numer-
ical diffusion. In the most current version of SWAN, this scheme is
only used in cells connected to solid boundaries for both stationary
and non-stationary waves.

In executing this comparison experiment, we have followed the
approaches used in Booij et al. (1999) and Hsu et al. (2005). It
should be noted that this benchmark test case only provides the
relative numerical diffusion between these different finite-differ-
ence and finite-volume schemes, because the accuracy of the wave
field can be affected significantly by the finite-resolution discreti-
zation that is used in frequency and directional space. A more
objective comparison should be made based on the so-called gar-
den sprinkler problem (SWAMP Group, 1985). This problem was
not examined in our current SWAN and FVCOM-SWAVE compari-
son experiments.

3.2. Wave-current interactions

This idealized case considers propagation of waves in a deepwa-
ter region in the presence of a uniform background current. Four

Fig. 2. Spatial distributions of the significant wave height (m) for a harmonic wave propagating along a diagonal line in a square computational domain. (a) SWAN-BSBT; (b)
SWAN-SORDUP; (c) SWAN-SL; and (d) FVCOM-SWAVE.
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cases are tested: (a) wave propagation opposite to the direction of
the current; (b) wave propagation in the same direction as the cur-
rent; (c) wave propagation against the current at an angle of 30�;
and (d) wave propagation in the direction of the current at an angle
of 30�. These four cases are shown schematically in Fig. 3.

The computational domain consists of a rectangle of length
4 km and width 10 km. The assumed waves have the same distri-
bution and shape as those in the previous test case (3.1) and they
are specified along the left boundary with a direction of propaga-
tion as shown in Fig. 3. In cases (a) and (b), the speed of the current
increases in the down-wave direction, ranging from 0.0 to 2.0 m/s.
In cases (c) and (d), the current is rotated by 90�. The SWAN imple-
mentation employed a rectangular grid with a horizontal resolu-
tion of 40 m in the direction of the wave propagation (x-axis)
and 100 m in the cross-wave direction (y-axis). To maintain the
same spatial resolution as SWAN in the direction of wave propaga-
tion, a mesh of equilateral triangles with an edge length of 40 m
was used for FVCOM-SWAVE. SWAN was run using the third-order
Stelling–Leendertse scheme and FVCOM-SWAVE was run using the
second-order semi-implicit upwind scheme.

Given the same resolution in the wave propagation direction,
the distributions of significant wave height and mean wave direc-
tion in the x-direction calculated by SWAN and FVCOM-SWAVE are
almost identical (Fig. 4) and match well with the analytical solu-
tion. The root-mean-square (RMS) differences of significant wave
height (Hs) and direction (h) between SWAN and FVCOM-SWAVE
for the four cases in this experiment are calculated. The correlation
coefficients of these two models for Hs and h are essentially 1.0, and
the RMS (%) difference (see the definition given in Eq. (21)) is�0.44
(or less) for Hs and �0.004 (or less) for h. This demonstrates that
the second-order finite-volume advection scheme used in
FVCOM-SWAVE has an equivalent accuracy as the third-order fi-
nite-difference scheme used in SWAN. For this idealized domain,
the fact that the wave features from structured-grid SWAN runs
can be exactly reproduced using an unstructured-grid finite-vol-
ume model suggests that the finite-volume flux algorithm used
in FVCOM-SWAVE can ensure high numerical accuracy with little
influence from the irregular grid. This suggests that the geometric
grid flexibility of FVCOM-SWAVE makes it a good candidate to sim-
ulate wave-current interactions in complex coastal regions with
strong currents, headlands, islands, and irregular channels.

Hsu et al. (2005) used FE-WAVE model to conduct the same
experiment. The agreement of their solution with the original
SWAN varies with the x-axis. The match is good over a distance

of less than 3.0 km, but a significant bias occurs over the remainder
of the domain. In this test case, the unstructured-grid finite-vol-
ume algorithm used in FVCOM-SWAVE seems to show more prom-
ise than the unstructured-grid finite-element method used by Hsu
et al. (2005). However, as the FE-WAVE model is not an open
source code, the comparison made here is only based on Figs. 2
and 3 in Hsu et al. (2005).

3.3. Wave shoaling and refraction

Consider surface waves propagating towards a straight beach.
The water depth varies from the deeper outer region with a depth
of 20 m, to zero at the coast over a distance of 4.0 km. Two cases
are examined: (a) incident waves propagating in the direction per-
pendicular to the coastline and (b) incident waves propagating to-
wards to the coast with an angle of 30� (Fig. 5). These two cases are
designed to examine wave shoaling and refraction without wave-
current interaction.

The wave model boundary conditions and set-up at the deep
open boundary are the same as those given in Section 3.2. The hor-
izontal computational domain consists of a rectangular area with a
width of 20 km (y-axis) and a length of 4 km (x-axis). For SWAN,
we use a rectangular grid with a resolution of 40 m in the x-axis
(cross-isobath direction) and 200 m in the y-axis (along-isobath
direction). To have the same resolution in the cross-isobath direc-
tion, FVCOM-SWAVE uses an equilateral triangular grid with a
length of 40 m.

Running SWAN with the third-order Stelling–Leendertse scheme
produces exactly the same results as those shown in Booij et al.
(1999). The model solution matches the analytical solution from
linear wave theory, with an error of 0.1% in significant wave height
and of <0.25� in direction within the region with water depth
>0.05 m. Given the same horizontal resolution, FVCOM-SWAVE
predicts a nearly identical solution to that of SWAN for both the

Fig. 3. Schematic of the surface wave propagation in a domain with an ambient
water current.~cg is the wave group velocity and ~V is the water current vector.

Fig. 4. Cross-isobath distributions of the SWAN and FVCOM-SWAVE predicted
significant wave heights and wave propagation directions for cases (a), (b), (c), and
(d) shown in Fig. 3. Solid line: SWAN, and dashed line: FVCOM-SWAVE.
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shoaling and refraction cases (Fig. 6). Considering the same domain
with water depth >0.05 m, the correlation coefficient of these two
model results is essentially 1.0 for all cases, and the RMS(%) differ-
ence is 1.84 (or less) for Hs and 0.63 (or less) for h. However, FE-
WAVE shows a relatively larger bias in comparison with SWAN
(Figs. 4 and 5 in Hsu et al. (2005)), and in fact the bias suggested
for FE-WAVE appears to be larger than that for FVCOM-SWAVE.

3.4. Growth curves for wind-generated waves

In studying growth curves for these two model systems, we
used the same source term formulations for FVCOM-SWAVE as
we used for SWAN (the so-called WAM cycle 3 physics). We as-
sumed a constant wind of 20 m/s at 10-m reference height off a
long, straight coastline in a rectangular domain with dimensions

consisting of a length of 400 km in the along-coast direction
(y-axis) and a width of 9000 km in the cross-coast direction
(x-axis). The ocean is assumed to be infinitely deep. We compared
the growth curves of total wave energy and peak frequency as esti-
mated by FVCOM-SWAVE and SWAN. Both FVCOM-SWAVE and
SWAN are run with a cross-coastal resolution of 10 km. The param-
eters used in the model setups are based on the values listed in

Fig. 5. Schematic of the surface wave propagating towards the coast from the
deepwater region to the shallow shelf. Case (a): shoaling experiment; case (b):
refraction experiment.
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in Fig. 5. Solid line: SWAN, and dashed line: FVCOM-SWAVE.

Table 1
Parameters used in SWAN and FVCOM-SWAVE setups

Parameters Definition Value

cds2 Coefficient used to determine the rate of whitecapping
dissipation

2.36 � 10�5

stpm Value of the wave steepness for the Pierson–Moskowitz 3.02 � 10�5

a Proportionality coefficient in the case with inclusion of
Cavaleri and Malanotte’swave growth term

0.0015

alpha Proportionality coefficient of the rate of dissipation 1.0
gamma The ratio of maximum individual wave height over

depth
0.73

cfjon Coefficient of the JONSWAP formulation 0.067
iquad Fully explicit computation of the nonlinear transfer

with DIA per iteration
2

lambda Coefficient for quadruplet configuration in the case of
DIA

0.25

Cnl4 Proportionality coefficient for quadruplet interactions
in case of DIA

3 � 107

Csh1 Coefficient for shallow water scaling in case of DIA 5.5
Csh2 Coefficient for shallow water scaling in case of DIA 6/7
Csh3 Coefficient for shallow water scaling in case of DIA 1.25

Fig. 7. Distributions of dimensionless fetch-limited growth curves for the total
wave energy E* (a) and peak frequency f �p as a function of dimensionless fetch for
FVCOM-SWAVE, stationary and non-stationary SWAN.
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Table 1, as documented by the SWAN Team (2006a,b), with the
WAM cycle 3 physics.

In this case, FVCOM-SWAVE and SWAN show similar growth
curves in dimensionless wave energy (E� ¼ g2E=U4

� Þ and dimen-
sionless peak frequency (f �p ¼ U�fp=gÞ as functions of dimensionless
fetch (X� ¼ gX=U2

� Þ (Fig. 7). Here E is the total wave energy, g is the
gravitational acceleration, U* is the friction velocity at the sea sur-
face, namely U2

� ¼ CDU2
10 (where CD is the drag coefficient following

Wu (1982), U10 is the wind speed at the 10-m height above the sea
surface) and X is the fetch.

For large fetch, X* > 106, the dimensionless total energies of
FVCOM-SWAVE and SWAN (stationary and non-stationary cases)
are within the variations shown by models considered by the
SWAMP Group (1985). For smaller fetch, X* < 106, the growth curve
for FVCOM-SWAVE is very close to that shown for the stationary
SWAN run; however these curves are significantly lower than that
resulting from the non-stationary SWAN run. Similarly, both
FVCOM-SWAVE and non-stationary SWAN-predicted peak frequen-
cies are within the range of variation examined by the SWAMP
Group (1985), except for very small fetches of X* � 105. In this case,
the SWAN results are identical to those shown by Booij et al.
(1999). The results of this comparison are consistent with the find-
ings of Hsu et al. (2005). The latter pointed out that in its non-station-
ary mode, SWAN significantly overestimates the total wave energy
growth curve as a function of fetch where X* < 106. Here, we show
that this bias is resolved by the non-stationary mode of FVCOM-
SWAVE.

4. Application to the Gulf of Maine

4.1. Design of numerical experiments

The Gulf of Maine (GoM) is located along the US northeast coast.
It is a semi-enclosed basin opening to the North Atlantic Ocean

(NA) (Fig. 8). The GoM bathymetry features several deep basins,
submarine banks, and shallow shelves connected to coastal inlets,
bays and estuaries. One of the primary objectives of developing
FVCOM-SWAVE is to include it in the FVCOM-based unstruc-
tured-grid Northeast Coastal Ocean Forecast System (NECOFS)
(see http://fvcom.smast.umassd.edu/). Thus, the coupled model
system would be able to make predictions of wind-induced surface
waves and their coupling with other physical processes (e.g., wave
setup, wave-current interaction, sediment transport) in this region,
with its complex inner shelf bathymetry and irregular coastline. To
validate the accuracy and reliability of FVCOM-SWAVE for this re-
gion, we used this model to simulate January 2007.

In fact, the GoM FVCOM-SWAVE grid covers the entire US east
coast region with an open boundary running from a land point at
about 65�W, 10�N towards the northeast to about 20�W, 50�N
and then turning towards the east coast of Greenland (Fig. 9).
The computational domain consists of the unstructured triangular
grid, with a horizontal resolution varying from �25 to 50 km in the
interior of the NA to 0.5–1.0 km along the coast of the GoM, New
England Shelf, Long Island Sound and over Georges Bank
(Fig. 10). The total number of nodes is 30760 and total number
of cells is 57013. Although our main interest is in the GoM and
adjacent coastal regions, running FVCOM-SWAVE in this large do-
main can minimize open boundary issues. The flexibility in the
spatial discretization enabled through the use of unstructured
meshes allows coarse resolution in the open ocean and fine resolu-
tion in the coastal region, with limited reduction in computational
efficiency. In January 2007, westerly wind prevailed over the GoM
region. The dominant wind patterns blew from the land to the
ocean, so that essentially no wave forcing was required to specify
the remote open boundary. In this application experiment, no
ambient currents were included.

The GoM FVCOM-SWAVE was driven by the wind fields derived
from the GoM-WRF (Weather Research and Forecast) and the NA-
WRF models. The GoM-WRF model was established as a part of NE-

Fig. 8. Locations of NDBC environmental buoys in the US northeast coastal region used for the model-data comparison. GoM, Gulf of Maine; BF, Bay of Fundy; GB, Georges
Bank; LIS, Long Island Sound; CB, Chesapeake Bay. Filled triangles: buoys located in zone 1 (water depths <50 m); filled diamonds: buoys located in zone 2 (water depths in
50–200 m range); and filled circles: buoys located in zone 3 (water depths >200 m). The number listed on each buoy is its name.
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COFS and uses a 9-km horizontal resolution covering the entire
GoM and adjacent New England Shelf and Scotian Shelf. Hourly
wind velocity data from all meteorological buoys in these regions
were assimilated into this weather model to produce a reliable
and accurate wind field. Since most buoys were located near the
western NA coast, the assimilation helped reduce the RMS errors
of the WRF winds in this region (Table 2). In the region outside
of the GoM-WRF domain, we used the reanalysis 3-hourly 32-km
resolution NA-WRF-predicted wind fields (available at http://no-
mads.ncdc.noaa.gov/). Linear interpolation was used to merge
NA-WRF and GoM-WRF outputs to form an hourly wind-forcing
field covering the entire computational domain. Although this ap-
proach tends to ‘‘filter” out wind variations with time scales < 3 h

in the NA-WRF region, it causes little influence on the wave simu-
lation in the GoM and adjacent coastal regions where only the
hourly GoM-WRF winds were used.

The source terms used in GoM FVCOM-SWAVE were the same
as those used in the SWAN simulations. The wave growth due to
wind input (Sin) is determined by the sum of linear and exponen-
tial growths. The linear term is specified by an empirical formula
of Cavaleri and Malanotte-Rizzoli (1981) with a filter for the trun-
cation at the Pierson–Moskowitz frequency (Pierson and Mosko-
witz, 1964). The exponential wave growth term is specified
using Komen et al. (1984)’s empirical expression that is a function
of inverse wave age U*/cph (where cph is the phase speed). The dis-
sipation includes white-capping, Sds,w, bottom friction, Sds,b, and
depth-induced breaking, Sds,br. Sds,w is derived from Hasselmann
(1974)’s pulse-based model, Sds,b follows from the ‘‘JONSWAP”
empirical function with Collins (1972)’s drag law expression
and Madsen et al. (1988)’s eddy-viscosity formulation. Sds,br is

Fig. 9. Unstructured grid of the FVCOM-SWAVE configured for the US northeast
coastal region.
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Fig. 10. An enlarged view of the unstructured triangular grid in the Gulf of Maine and New England Shelf region. The horizontal resolution of the grid varies from 25 km off
Georges Bank to 0.5–1.0 km near the coast.

Table 2
Correlations and RMS (%) errors of assimilated wind speed via observations at buoy
stations.

Buoy station
identification

Sample
number

Correlation
coefficient

RMS error
(%)

44004 734 0.84 1.25
44005 742 0.95 1.11
44007 743 0.87 1.48
44009 744 0.87 1.29
44013 739 0.92 0.99
44014 741 0.84 1.46
44017 743 0.87 1.29
44018 698 0.94 0.83
44024 692 0.92 0.98
44025 741 0.87 1.32
44027 743 0.94 0.85
44029 740 0.88 1.38
44030 740 0.90 1.17
44031 698 0.87 1.45
44032 728 0.90 1.14
44033 724 0.85 1.71
44034 704 0.92 1.07
44035 600 0.74 2.73
44037 668 0.94 0.82
44038 728 0.93 0.89
Mean 0.89 1.26
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estimated by the bore-based function derived by Battjes and Jans-
sen (1978). The nonlinear transfer of wave energy due to wave–
wave interactions is calculated by a sum of Snl3 (triad wave inter-
actions) and Snl4 (quadruplet wave interactions). Snl3 is estimated
from the Lumped Triad Approximation (LTA) derived by Elde-
berky (1996) and Snl4 is specified by the Discrete Interaction
Approximation (DIA) by Hasselmann et al. (1985). The parameters
used in this experiment are shown in Table 1; detailed definitions
are given by the SWAN Team (2006b).

The GoM FVCOM-SWAVE results are compared with significant
wave height and period data recorded by 21 NOAA buoys. The buoy
locations are shown in Fig. 8 and the data are available at the Na-
tional Data Buoy Center (http://www.ndbc.noaa.gov/hmd.shtml).
To evaluate the performance of GoM FVCOM-SWAVE as a function

of water depth, we divided the computational domain into three
zones. Letting h be the mean water depth, zone 1 refers to the re-
gion in which h < 50 m; zone 2 is the region with
50 m 6 h 6 200 m, and zone 3 is the region with h > 200 m. There
are 8 buoys in zone 1, 11 buoys in zone 2 and 2 buoys in zone 3.

4.2. Model-data comparisons

During January 2007, the GoM surface weather was character-
ized by cold-air frontal passages with a typical time scale of 3–5
days before January 20; thereafter, the area was dominated by
southeastward to southward winds that were comparatively more
steady (Fig. 11). The maximum 10-m wind speed was �10–13 m/s.
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Fig. 11. Time series of wind velocity at the 10-m height above the sea surface at buoy 44004 and buoy 44032 for January 1–31, 2007.

Table 3
Mean and standard deviations (SD) of observed and calculated significant wave
heights, correlation coefficients, and RMS errors at buoy stations.

Station
(sample
number)

Mean ± SD
(observed) (m)

Mean ± SD
(calculated)
(m)

Correlation
coefficient

RMS
(m)

RMS
(%)

Zone 1 (h < 50 m)
44033 (701) 0.73 ± 0.36 1.15 ± 0.34 0.60 0.53 24.9
44031 (693) 1.06 ± 0.52 0.93 ± 0.37 0.75 0.37 21.2
44007 (733) 0.95 ± 0.50 0.87 ± 0.35 0.73 0.35 22.4
44017 (733) 1.51 ± 0.64 1.41 ± 0.50 0.84 0.36 17.6
44025 (726) 1.42 ± 0.62 1.39 ± 0.49 0.83 0.35 16.4
44009 (739) 1.30 ± 0.52 1.30 ± 0.42 0.75 0.35 17.0
44014 (741) 1.62 ± 0.74 1.53 ± 0.47 0.86 0.41 11.9
Mean 1.23 ± 0.56 1.23 ± 0.42 0.77 0.39 18.8
Zone 2 (50 m 6 h 6 200 m)
44027 (742) 1.77 ± 0.92 1.62 ± 0.69 0.83 0.54 13.0
44034 (677) 1.62 ± 0.85 1.46 ± 0.62 0.83 0.51 20.6
44032 (726) 1.40 ± 0.68 1.27 ± 0.49 0.71 0.50 24.3
44030 (736) 0.99 ± 0.44 0.98 ± 0.36 0.67 0.33 20.3
44029 (734) 0.99 ± 0.44 0.95 ± 0.36 0.64 0.35 36.4
44013 (737) 0.93 ± 0.46 0.88 ± 0.40 0.72 0.33 20.5
44018 (558) 1.78 ± 0.70 1.85 ± 0.67 0.86 0.36 15.3
44008 (729) 2.33 ± 0.90 1.99 ± 0.74 0.87 0.57 13.2
44038 (719) 2.18 ± 1.06 1.99 ± 0.88 0.86 0.57 11.2
44005 (479) 1.81 ± 0.80 1.52 ± 0.60 0.83 0.50 12.8
44024 (700) 2.71 ± 1.30 2.21 ± 0.87 0.86 0.88 13.0
Mean 1.68 ± 0.78 1.16 ± 0.61 0.79 0.49 18.2
Zone 3 (h> 200 m)
44037 (690) 2.03 ± 0.97 1.88 ± 0.80 0.83 0.56 12.7
44004 (734) 2.70 ± 1.26 2.23 ± 0.89 0.91 0.76 17.4
Mean 2.37 ± 1.11 2.06 ± 0.85 0.87 066 15.1

Table 4
Mean and standard deviations (SD) of observed and calculated peak wave periods,
correlation coefficients, and RMS errors at buoy stations.

Station
(Sample
number)

Mean ± SD
(observed)
(sec)

Mean ± SD
(calculated)
(sec)

Correlation
coefficient

RMS
(sec)

RMS
(%)

Zone 1 (h < 50 m)
44033 (659) 5.84 ± 2.71 6.27 ± 2.28 0.22 3.17 33.0
44031 (679) 6.30 ± 2.65 6.82 ± 2.38 0.27 3.09 32.0
44007 (733) 7.36 ± 3.12 7.10 ± 2.23 0.41 3.00 26.7
44017 (733) 6.64 ± 1.93 6.87 ± 1.64 0.28 2.17 27.8
44025 (726) 6.36 ± 1.96 6.50 ± 1.76 0.38 2.08 23.4
44009 (739) 6.01 ± 2.13 6.51 ± 2.26 0.34 2.58 23.4
44014 (741) 7.27 ± 1.87 7.05 ± 2.03 0.17 2.52 23.5
Mean 6.54 ± 2.34 6.73 ± 2.08 0.30 2.66 27.1
Zone 2 (50 m 6 h 6 200 m)
44027 (742) 6.85 ± 2.15 6.78 ± 2.02 0.49 2.10 23.2
44034 (677) 6.92 ± 2.62 7.09 ± 2.02 0.34 2.71 24.9
44032 (723) 6.59 ± 2.60 6.55 ± 2.30 0.39 2.72 30.4
44030 (735) 6.13 ± 2.79 6.90 ± 2.78 0.25 3.50 33.6
44029 (734) 5.54 ± 2.42 5.97 ± 2.79 0.41 2.89 28.6
44013 (737) 5.31 ± 2.88 6.10 ± 3.04 0.46 3.18 32.5
44018 (558) 7.32 ± 1.69 7.19 ± 1.56 0.38 1.83 21.1
44008 (729) 7.54 ± 1.64 7.21 ± 1.48 0.40 1.75 20.5
44038 (719) 7.24 ± 2.00 7.09 ± 1.55 0.44 1.92 24.9
44005 (479) 6.51 ± 1.98 6.89 ± 2.19 0.46 2.42 25.6
44024 (700) 8.09 ± 2.06 7.75 ± 1.78 0.44 2.09 29.6
Mean 6.73 ± 2.26 6.86 ± 2.14 0.41 2.46 26.8
Zone 3 (h > 200 m)
44037 (690) 6.80 ± 1.91 6.73 ± 1.57 0.43 1.88 23.7
44004 (734) 7.81 ± 1.65 7.35 ± 1.61 0.58 1.57 15.3
Mean 7.30 ± 1.78 7.04 ± 1.59 0.51 1.73 19.5
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As shown in Fig. 11, the wind speed and direction varied signifi-
cantly from the near-coastal regions to the open ocean, which is

evident at buoy 44032 (�50-m isobath) and buoy 44004 (�3182-
m isobath).
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Fig. 12. Comparisons of the GoM FVCOM-SWAVE predicted (solid line) and observed (dashed line) significant wave heights (left) and dominant wave periods (right) at buoys
in zone 1 (water depth <50 m).
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The GoM FVCOM-SWAVE simulation performed reasonably
well in capturing the spatial and temporal variability of wind-
induced surface waves along the coast. Tables 3 and 4 show
the means, standard deviations (SD), correlation coefficients,
RMS and RMS (%) errors of Hs and Tp at buoy locations. The
mean and SD values are calculated based on the measured data
used in this comparison. In zone 1 (in water depth <50 m), the
observations show that the peak Hs values are �1–3 m in the
near-coastal regions with mean values of 0.7–1.6 m and stan-
dard deviations of 0.4–0.7 m. We neglect buoy 44035 in this
comparison because it was located in a sheltered area (in Pas-
samaquoddy Bay) not open to wind-generated waves of the
GoM and had high errors in the wind fields and recorded very
low values for Hs �0.1–0.3 m. These spatial and temporal dis-
tributions were well captured by the GoM FVCOM-SWAVE
(Fig. 12). The model-predicted Hs estimates were in good agree-
ment with 7 near-shore coastal buoys ranging from the Bay of
Fundy to the Chesapeake Bay. The model predicted means and
standard deviations of Hs show the same range as observations:
the RMS (%) error varying from 11.9 to 24.9 with a mean RMS
(%) error of 18.8. The largest observed Hs values occurred in
zone 2, in the range of 1–7 m with maximum mean and stan-
dard deviation values of 2.7 and 1.3 m. The GoM FVCOM-

SWAVE reasonably captured the temporal variation in wave
heights that were observed (Fig. 13). Cr was 0.64–0.87, with
RMS (%) error varying from 11.2 to 36.4 with a mean RMS (%)
error of 18.2. In zone 3, the peaks of the observed Hs values
are similar to those found in zone 2. The GoM FVCOM-SWAVE
reliably simulated the Hs peaks (Fig. 14), with Cr in the range of
0.83–0.91, RMS(%) errors of 12.7 and 17.4 and a mean RMS(%)
error of 15.1.

The model-predicted Tp values have a low correlation with
observations in all three zones, although the model clearly cap-
tures the wind-induced temporal variation pattern for Tp. The
model-predicted means and standard deviations of Tp are in
agreement with the range of the observations. The mean RMS
(%) error for zone 1 is 27.1, which is comparable with our value
of 26.8 for zone 2. A close examination of the differences in the
model and observed Tp time series in Figs. 12–14 shows that the
observations exhibit more notable variation with time than the
model. In particular, the GoM FVCOM-SWAVE estimates show
a tendency to under-predict observed Tp peaks. Although this
can be attributed to biases in the wind fields and model inade-
quacies, it results from the common tendency of spectra to have
multiple peaks and thus Tp estimates vary among the competing
spectral peaks.
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Fig. 13. Comparisons of the GoM FVCOM-SWAVE predicted (solid line) and observed (dashed line) significant wave heights (left) and dominant wave periods (right) at buoys
in zone 2 (water depth in the range 50–200 m).
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Fig. 14. Comparisons of the GoM FVCOM-SWAVE predicted (solid line) and observed (dashed line) significant wave heights (left) and dominant wave periods (right) at buoys
in zone 3 (water depth >200 m).
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5. Conclusions

Compared to the conventional SWAN formulation, FVCOM-
SWAVE provides an alternative version of the wave model based
on an unstructured-grid finite-volume approach. In particular the
latter is more suitable for application in coastal and estuarine re-
gions characterized with irregular coastal geometry. Four idealized
benchmark test problems in rectangular domains are used to dem-
onstrate that the second-order unstructured-grid finite-volume
method used in FVCOM-SWAVE has the same level of accuracy
as the third-order finite-difference method used in SWAN. At a
fourth test, fetch-limited growth curve analysis following SWAMP
Group (1985) shows that FVCOM-SWAVE behaves acceptably in
comparison to SWAN growth curves. Finally, an application of
the models to the Northwest Atlantic, particularly the Gulf of
Maine and related US northeast coastal waters, suggests that
FVCOM-SWAVE is robust and can capture the temporal and spatial
variation of waves generated by Nor’easters and other high-wind
events over both continental shelf and near-shore regions.

Our experiments indicate that the default parameterizations of
SWAN (which is adopted by FVCOM-SWAVE) tend to underestimate
the significant wave heights during strong wind events. Similar
problems were also reported in SWAN’s application by Rogers
et al. (2002), who found that SWAN tended to underpredict low-
and medium-frequency energy in a wind-sea portion of the spec-
trum. The accuracy of the SWAN simulation is directly affected by
parameterization of whitecapping dissipation, as well as nonlinear
wave–wave interactions, which are central to the growth and devel-
opment of wind-generated waves (Zhang et al., 2006; Zhang and Per-
rie, 2008). The drag coefficient parameterization for surface wind
stress is somewhat old, dating from more than 25 years ago. In the
current version of SWAN, the surface wind stress is calculated by
an empirical function. This function does not be capture the wave-
age dependence advocated in modern parameterizations for wave
drag (Zhang and Perrie, 2008). It is well know that physical processes
in wave models have definite limitations, particularly the DIA for-
mulation for nonlinear wave–wave interactions. Resio and Perrie
(2008) pointed out very definite problems in simulating shallow
water waves, which are the focus for our present paper. Wind input
(Sin) and dissipation (Sds) are usually tuned to compensate whatever
DIA tries to give. This approach, however, cannot compensate for
deficiencies in shallow water simulations. Wave-current interaction
also may be a factor that can influence wave evolution. These issues
are being addressed in our ongoing validation of FVCOM-SWAVE.

The development of advanced inundation and wave forecast sys-
tem has received increased attention in recent years due to high-
wave events combined with massive flooding (e.g., New Orleans
during Hurricane Katrina in 2005) and other recent major coastal
flooding events where waves were high. Accurate simulation of
the wind-driven surface waves is required for the reliable prediction
of storm surge processes. In order to set up an accurate reliable fore-
cast system for surface waves using FVCOM-SWAVE, new formula-
tions for the source terms must be developed and implemented in
the model. Candidates for these new parameterizations are emerg-
ing in recent years (Resio and Perrie, 2008; Perrie and Resio, 2008)
and we hope to make appropriate tests with a large number of severe
storms. These validation experiments should include a large selec-
tion of different wind regimes to validate the accuracy, reliability
and limitation of the model for coastal applications.
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Appendix A. Discretization of the action density equation in
geographic space

The time integration equation of action density in geographic
space (Eq. (5) in the text) is rewritten here as

Nnþ3
4 � Nnþ2

4

Dt
þr � ðC

*

NÞ ¼ 0 ðA1Þ

where C
*

¼ C
*

g
þV

*

. Integrating (A1) in the control area X (see Fig. 1)
yields

Nnþ3
4 ¼ Nnþ2

4 � Dt
X

t
X
r � ðC

*

NÞdX ¼ Nnþ2
4 � Dt

X

I
l

CnNldl: ðA2Þ

In the second-order approximated upwind scheme,

Nl ¼
NlA for Cn > 0
NlB for Cn < 0

8><
>: ðA3Þ

where

NlA ¼ NA þr � NADrA ðA4Þ
NlB ¼ NB þr � NBDrB: ðA5Þ

Integrating (A4) in area XA (a sum of the areas of the light gray tri-
angles), we have

NlA ¼ NA þ
DrA

XA
t
XA

r � NAdXA ¼ NA þ
DrA

XA

I
lXA

NlXA
dlXA : ðA6Þ

Similarly, integrating (A5) in area XB(a sum of the areas of triangles
with edges shown in dashed line, we have,

NlB ¼ NB þ
DrB

XB
tXB
r � NBdXB ¼ NB þ

DrB

XB

I
lXB

NlXB
dlXB ðA7Þ

The finite-volume discrete expressions of (A2), (A6) and (A7) can be
written in the flux form as

Nnþ3
4 ¼ Nnþ2

4 � Dt
X

Xln

i¼1

Cn;iNli Dli ðA8Þ

NlA ¼ NA þ
DrA

XA

XlXA ;n

j¼1

NlXA
;jDlXA ;j ðA9Þ

NlB ¼ NB þ
DrB

XB

XlXB ;n

j¼1

NlXB
;jDlXB ;j: ðA10Þ

In the explicit scheme, Nl is given by its value at the (n + 2/4)th time
step, while in the implicit scheme, it is an unknown variable at the
(n + 3/4)th time step.
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