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ABSTRAOT

In this paper, some important features of the geostrophic adjustment process of large-
scale motions in a barotropic and a baroclinic oceans are systematically investigated by
means of the scale analysis. For the barotropic ocean, the comstraint of the horizontal scale
on the linear theory of geostrophic adjustment process is given and the dispersive mechanism
of the unbalanced energy in the response of the flow field in the oceanic interior to a steady
wind field is expounded. For the baroclinic ocean, the effects of the water depth and density
stratification on the solution of geostrophic balance state are taken into account. As exam-
Ples, some major properties of the geostrophic equilibrium state in the ocean of finite depth
and in a two-layer model ocean which are different from those in the atmoshere are discuss-
ed in detail. In addition, a conservation equation for the mnonlinear model is derived through
introducing some simplications in which only the nonlinear potential flow and vertieal
transport of mass field are considered.

I. INTRODUCTION

The geostrophic adjustment process is one of the basie theoretical problems in the
field of geophysical fluid dynamics. It was first posed and studied by Rossby (1936),
later by Cahn, Bolin™ and Veronis™, who investigated the dispersive mechanisms of
non-geostrophic energy in a barotropic or a baroclinic ocean as well as how the energy
is partitioned to geostrophic and non-geostrophic motions. Other authors (for exam-
ple, Obukhov, Ye Duzheng'”, Li Maicun, Zeng Qingeun™, Chen Qiushi, Kuo, H. L.™
and Bluman™") worked thoroughly at the details of the geostrophic adjustment pro-
cess of atmospheric motions and systematically established the linear and mnon-linear
geostrophic adjustment theories. As a result, the great success in the routing numeri-
cal weather prediction has been achieved with the applications of these theories.

By comparison, the development of the geostrophic adjustment theories of oceanic
motions is not so rapid as that of atmospheric motions. The previous work by Rossby
and Bolin was mainly concerned with the oceanic flow within a finite width. The con-
clusions thus obtained are restrictive to a certain degree. The thermodynamic process
of the atmosphere is different from that of the ocean. Because the state equation of
the ideal gas is valid for the atmosphere, the treatments of many problems related to
the baroclinic atmosphere are simpler than those of the baroclinic oceanic omes. The
limited oceanic bounds in the vertical and the density stratification exert directly in-
fluence on the properties of the solution of geostrophic equilibrium state, so many the-
oretical results obtained about the geostrophic adjustment of the baroclinic atmosphere
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are not adaptable to the baroclinic ocean, In this paper, based on tl}e vie'wpoint of at-
mosphere-ocean dynamics, some important features of the Eeoﬁtr(_’Ph“c .adJuatment pro-
cess in a barotrophic and a baroclinic ocean are systematically mvesttgaate.d by means
of the scale analysis. For the barotropic ocean, the constraint of t.he. -honzonball scale
on the linear theory of geostrophic adjustment process and the disperle-e I‘nBchE.i.msm o
the unbalanced energy in the response of the flow field in the oceanie lnterior to a
steady wind field are revealed. For the baroclinic ocean, some main characteristics of
the geostrophic equilibrium state in the ocean of finite depth and in a two-layer model
ocean which differs from those in the atmosphere are discussed in detail. Finally, a

potential vorticity conservation equation for the nonlinear adjustment process under
some simplications is derived.

II. LmMrraTioN oF HORIZONTAL SCALE OF MOTIONS IN
LINEAR GEOSTROPHIC ADJUSTMENT PROCESS

The governing equations of the large-scale motion for a barotropic fluid can be
expressed in dimensionless form as follows:

u

2] z

Fig. 1. Right-hand rectangular coordinates in which
(x, y)-plane lies on the sea bottom with z eastward
and y northward.
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wh =_1 =l 9D ey
ere € = ﬁ, F, = EE—, L=ILa, L= \/ gD [fo; L denotes the characteristie

n | ‘ :

horizontal length scale, L, the radius of Rossby deformation, D the mean depth of the
fluid, T' the characteristic scale for time, T the characteristic scale for horizontal velocity,
fo the value of Coriolis parameter at the central latitude, @ the controlling parameter

O.f the horizontal scale, v the two-dimensional gradient operator. The other nondimen-
sional variables mentioned above have their usual. meahings, as used in geophysieal
fluid dynamies. .

Assumng O (| —fhX Vy

—v®|)=0(1), it is evident from Eqs. (2.1) and (2.2)
that the following condition W

must be satisfied if the process of geostrophic adjustment

—— e ——————————
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o(

For the large-scale oceanic motions, we have U~ 10"'m/s, D~10°m and g~10m/s’,
and

is linear,

1/2 :
£2) <107, i e, 0(a) > 100, (23)
/

O(F,) = 1073, or its equivalence O(a) = 0(107?).

This implies that the horizontal characteristic scale may differ in order of mag-
nitude from the Rossby deformation radius in the linear geostrophic adjustment pro-
cess of large-scale oceanic motions. Thus L« L, is permissive.

For the large-scale atmospheric motions, we also have U ~ 10 m/s, D ~ 10'm
and g ~ 10m/s’, and this leads to '

O(F,) = 107*, or its equivalance O(e) = 0(1).

Therefore, the order of magnitude of the charaecteristic horizontal scale is at least equal
to the Rossby deformation radius. In other words, the condition L<L, with the same
order of magnitude can be allowed. '
172

Provided that the order of magnitude of B,

a

is much smaller than unity, Egs.
(21) and (2.2) can be reduced to
e oVy

= —Vys® — fk X Vg, 2.4

B H f H (24
o 1

BE_—“ "'"'a—; VH' VH. (2.5)

Now, let us consider the following three special cases.

_ (1) It O(|—Vu® — fk X Vu|) =0 (1) and O(|Vy - Vy|) = 0(1), we can
easily get two different time scales from Egs. (2.4)—(2.5), i. e.

2
o(T,) = 0 (l) and O(T,) — 0(“—).
f 0 0
To ensure the consistency of the time scale in the foregoing equations, the character-
istic scale for time must be sole, that is, T, should be equal to 7s. Consequently,
0(e) =1, or equivalently, O(L) = 0(L,).

Therefore, the horizontal scale of motions in the geostrophic adjustment process must
be the same order of magnitude as that of the Rossby deformation radius when both the
horizontal divergence and geostrophic departure possess the order unity. In addition,
it is easily seen that the time scale for geostrophic adjustment is equal to fg*.

(2) If 0(|—Va® — fk X Vy|) = 0(@) and 0(|Vy - Vy|) > 0(1), then we
get from Egs. (2.4) and (2.5)

0(T) = 0(f3"); 0(a®) = 0(|Vy * Vi|).
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Thus, if the linear geostrophic adjustment process exists, the possible choice of L needs
to be restricted to a certain extent. In other words, L must satisfy the constraint given
above.

(3) If O(|Vy - Vu|) = 0(1) and O(|—fk X Vi — Va®|) 5 0(1), it leads to
0(T) = 0(af7*) ;0(a’| —fk X Vi — Vu®|) = O(1).

Tt is obvious from the two restrictive conditions that both the ratio of the horizontal
length scale to the Rossby deformation radius and the characteristic time for geostroph-
ic adjustment are in inverse proportion to the geostrophic departure, that is, if the
geostrophic departure is large, then the possibly selected value of L for the linear geo-
strophic adjustment process and the adjustment time will become small. The opposite
conclusion holds true for a small geostrophic departure. This result is consistent with
that obtained by Ye et al. (1965)™.

III. REespoNsSE oF THE FLow FiELD IN THE OCEANIC INTERIOR TO A STEADY WIND FIELD

Consider the large-scale motion in the oceanic interior for which the lateral eddy
viscosity can be ignored. The effects of vertical eddy viscosity are introduced by using
the Ekman pumping-induced vertical velocities of both lower and upper Ekman layers
as the vertical boundary conditions for the interior flow. So, the governing equations
and the corresponding boundary conditions in dimensional form can be simplified as:

%‘,H = —fk X VH - Vﬂd); (3‘1)
oW
Vy * V +—= 0’ -
2 Ve 2P (32)
W= 29%; Wlmo =222 + 1k x curle, (3.3)
g ot fo

where K = ‘\/Zlf’ v is the vertical eddy viscosity, p the sea water density, z the

sea surface stress vector exerted by the wind, W the velocity in the vertical
direction, ¢ the stream function.

Substitution of Vy = kX Vyd+Vud(d: the velocity potential) into Egs. (3.1)
and (8.2), and invoking the boundary condition (3.3) yield:

8¢ _ iy, 0 4 p08d 9 g
vy Vaor + 5 kacurlf 9fKEvie =0, (3.4)

Let ¢ be divided into two parts, i. e. the steady geostrophic part ¢, and the
unsteady part ¢, which satisfy the following equations, respectively,

1 A
— k X curlt — KVi¢p, =0
of HPg ’ (3.5)

i =
&P _ C%Vi,—ai

200 _ pa
Y at + f ot 9fKVud = 0. (3.6)
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It can be seen from Eqs. (3.5) and (3.6) that the steady geostrophic stream function
satisfies the balance relation between the wind stress on the sea surface and the bottom

friction, while the non-geostrophic perturbation is subject to the wave equation. Sup-
posing that ¢ has the wave form of solution

J; = Aei(kth—fft)' (37)

In (3.6) (where o, k, 7 denote the frequency and the wave numbers in z- and y- direc-

tions, respectively), we can immediately get the corresponding dispersion relation as
follows:

1 RE* .
_—f'+CSK’GS—U_FQ-|L-W"=O' (3.8)

where K* =& + 47, § = o/—1. Because 0 (—9[EE"_ <o (&) « 1, two distinct
f2+ 02 2 D
kinds of solution to (3.8) can easily be obtained:

i i R
ola=f+ CIK*+ 0 (——D ) (3.9)
_ __gfRE* |, 3.10
+ oE (2.10)

(3.9) represents tﬁe mixed waves due to the gravity-inertial effeets which propagate
towards two opposite directions, while (3.10) gives a kind of unpropagating and over-
damping wave. The behavior of the latter is similar to the standing waves except that

its amplitude decreases exponentially with time. Defining T as the time of wave decay,
a simple estimate gives

V2 (7 + o)
gV f» B?
Obviously, the time of decay is in inverse proportion to »*? and directly proportional

to D. In other words, the larger the eddy viscosity is (or the shallower the water depth
is), the faster the wave will be dispersed.

T (38.11)

It follows that in the response of the oceanic interior flow to a steady wind field
the non-geostrophic perturbation energy is dispersed by the gravity-inertial waves and
the unpropagating and over-damping waves caused by turbulent friction. The wind
stress exerted on the sea surface and the bottom frictional force gradually approach the
equilibrium, such that a quasi-geostrophic state of motion is ultimately established, Evi-
dently, owing to the effect of turbulent diffusion, the geostrophic adjustment becomes
speedy in comparison with that of inviseid fluid™.

IV. GEOSTROPHIOC ADJUSTMENT PROCESS IN THE BAROOLINIC OCEAN

1. Internal Gravity-inertial Waves and Equilibrium Equations
For Geostrophic Adjustment

Consider the adiabatic, imecompressible and inviseid baroclinic ocean. Using the
method of scale analysis, the linear dimensional equations governing the geostrophie
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adjustment process of the large-scale motion in the baroclinic ocean may be simplifieq
to

Vu_ _ fhXVy— L VuP, (41
ot Ps
ow
. = =0, 42
Vi Vi + (4.2)
S0 _ 2y, (4.3)
ot g
5 (2) il g (4.4)
0z \p; Ps
where p,(2) denotes the density distribution of undisturbed ocean, N;= — %%:—’

is the well-known Brunt-Vaisili frequency.The time of geostrophic adjustment for the
baroclinic ocean can easily be estimated as’

2
- (&)
Ly
The length scale L, = DN,/f, is defined as the internal Rossby radius of deformation,
Since Lp<Ls, the time required for the geostrophic adjustment is much longer in a

baroclinie ocean than in a barotropic one. Moreover, all the foregoing results derived in
Section IT is held to be valid for the baroclinic ocean.

After some simple mathematical manipulation in Egs, (41)—(4.4), the internal
gravity-inertial wave and the equilibrium equations for geostrophic adjustment may be
given as follows:

o’ W
(& +7) 28 4 moaw =, 8)
2 7 2 2 - 27

a2t \ox? 5; (4.7)

8 (P N: .
where @, = s (j) + F Vido; Py and ¢, are the initial disturbances of pressure

and stream function, respectively; ¢ is the Steady geostrophic stream function.

It is obvious from Eqs. (4.6) and (4.7) that the non-geostrophic perturbation ener-
gy of large-scale motions in the baroclinie ocean is dispersed by the internal gravity-
inertial waves and the whole adjustment process satisfies the conservation law of poten-
tial vorticity. Egs. (4.6) and (4.7) are mostly the same in essence ag those for the
baroclinic atmosphere. However, the limited ocean bounds in the vertical and density
stratification which are different from those in the atmosphere greatly affect the equi-
librium state of geostrophie adjustment, Thus, many theoretical results about the geo-

strophie adjustment of baroclinie atmosphere is not adaptable to the baroclinie ocean.
The details will be reported suceessively in the following.
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2. Geostrophic Adjustment Process in the Ocean of Finite Depth

(1) Emergy dispersive characteristics of the disturbance

Let us consider the baroclinic ocean of constant depth D, which extends infinitely
in the horizontal extent. Both the bottom and the surface of the sea are assumed to be
rigid surfaces, so

Wl:=0=0:W1:-D=0

may serve as the boundary conditions of the problem under discussion. The initial

ow

conditions W= = go(2,y,2) andja-t— - q:(z,y, #) are assignable. The solution
3

of Eq. (4.6) which satisfies the boundary and initial conditions given above is as
follows:

f oy
{_w__ ) s o

ar

]
sl 3 || AT
55 — 7

. 1=t I
H a.(z + reosf,y + rsinf, £)sin —= 5 d;‘] rdrd 6} = z, (4.8)

where a = Nl‘D, 0< 1< +00, 3%V denotes a circle of plane whose centre is at

IT

(z,y) and whose radius equals at.

The solution (4.8) means that the dispersive speed of non-geostrophic disturbance
energy is closely related to the distribution of the initial unbalanced field as well as
the magnitude of the parameters I, D, f and N,. For simplicity, assuming the follow-
ing initial disturbances,

(4.9)

and taking z=0, y=0 and af>E, without loss of the generality of the solution (4.8),
solution (4.8) can be reduced to

W= Z_Z_ {6: qo(C)sin-% ;d;‘)a [cos(—{b—«/a’t’— F’) (at—\/aztz“Rz)]

7 aD,
+ (S a(®) sm— d;) cos (-f— N — 7 ( —+f W——R’\}sm% 2

(4.10)

_ {qo(z) if r<B; o {ql(z) if r<R,
=it r>R; *= o it r >R,

where 0<#<<R. This implies that W—0 as at » R. As a result, the motion approaches
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The following results should be noted

1) 1f a is fixed, tho speed of geostrophic adjustment is obviously in inverse pro.
portion to B. In other words, the larger the horizontal scale B of t'he disturbanee is,
the slower the geostrophic adjustment will be. The oppos.itﬂ result is true for a small.
er R. However, it is impossible to approach the geostrophic balance state as B— oo,

2) If R is a constant, the time required for geostrophic adjustment is in in-

verse proportion to a. Since

a geostrophic equilibrium state.

_N,D
=== |
%]

(ie. wave nodal surface number) is (or the smaller either of D and ¥, is),
This result is eoinei-

a

the larger I .
the shorter the time required for geostrophic adjustment will be.

dent with B. Bolin’s (1955)".
3) The vertical structure of the initial disturbance field is only ?elated to the
amplitude of waves, but is independent of the speed of the geostrophic adjustment.

(2) Solution of the geostrophic equilibrium state equation

Supposing that the density values of initial disturbance at both the sea surface
and the bottom are equal to zero, the corresponding boundary conditions of Eq. (4.7)

with W|,o =0 and W|,-p = 0 may be rewritten as

8| _o 8| _o (4.11)

3
8z lz=0 8z l=p

The solution of Eq. (4.7) which satisfies the condition (4.11) is

== 3 b [] (T awntit ) (TE ) ]

lx '
» COS— 2.
D (4.12)

It follows from (4.12) that the solution of geostrophic equilibrium state is closely re-
lated to the horizontal and vertical distributions of the initial unbalanced field, the
nodal surface number of waves in the vertical direction, the water depth, the latitude,
the intensity of stratification and so on. No matter what the horizontal scale of disturb-
ance is, the remarkable changes will take place between the flow and pressure fields
because of the influences of the vertical boundary conditions. The phenomena appear
no longer, in which the flow field remains approximately unchanged while the pressure
field is adjusted to the flow field and wice versa. This is just one of the important
distinetions between the geostrophic adjustment process in the ocean of finite depth
and that in the baroclinic atmosphere.

We take a special example for further analysis as follows:
N —-'-“ 2
o = c,bo(f') = —Ae R? (Ez)—) , Po=0, (4.13)

where R is the distance from the centre of the vortex to the point of the maximum
current veloeity. A>0(m’/s). Substituting (4.13) into (4.12), the distributions of the
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geostrophic balanced flow and pressure are computed by numerical integration for
geveral cases, such as D=5000, 2500 m and N,=10"s"*, 2X10~*s"!, where A=2R"?, R=
50km and f=10"‘s™" (see Figs. 2—8), The computational results draw the follo‘wing
important conclusions: (i) The geostrophic equilibrium state is accomplished by the
mutual adjustment between the flow and the pressure fields; (ii) major energy of geo-
strophic equilibrium state is concentrated on the solution for /=1, but all higher modes
(1>>2) make less contribution to the final state of equilibrium, and this result is in
agreement with B. Bolin’s™; (iii) it is easier to maintain the flow field unchanged
in the strong stratification or in the deep water than in the weak stratification or in
the shallow water, and the opposite conclusion is also true for the pressure field; (iv)
apart from weakening of the current velocity in the upper layer, a vortex rotating in

Vtm/s)

— e — —
— —

051 02 03 04 05 06 07 08 09 10,1100 ki)

—

Fig. 2. Horizontal distributions of the initial and final geostrophic curremts at

the sea surface with parameters E = 50 km, L=100km, f=10s"', and D = 5000 m.

1. The initial current; 2. sum of the currents after the adjustment obtained from

1=1 to 1=8; 3. current after the adjustment for 1=1; 4. current after the
adjustment for I=2.

P(mb)
10
0 e —
1.0
i #(100 km)
-20
-30

Tig. 3. Horizontal distributions of the pressure after the adjustment at the sea surface.

Solid line represents the sum of the pressures after the adjustment obtained from I=1
to 1 =8, and the dashed line denotes the pressure after the adjustment for 1=1,
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Z(m)
2500 I r=50km
1875 /I
1250} 4
62 I
1/ 7(m/s)
1.0
-1 0’ | 2
625 ViVo(m/s)
7
/
—1250
1875 ————
- T~
2500 LT ==
0 0.5 1.0
(100 km)
Fig. 4. Vertical profiles of the initial Tig. 5. Horizontal distributions of the current
(solid line) and the final geostrophic after the adjustment for different intensities of
(dashed line) currents at 50 km away stratification.
from the centre of the vortex. Solid line: Ns =2 X 107%s™'; dashed line:
N:,=107%"",
P(mb
20} .
10
o ——
1.0
10 r (100 km)
—20t
-30

Fig. 6. Horizontal distributions of the pressure after the adjustment
for different intemsities of stratification.

Solid line: N; =2 X 107°s™'; dashed line: N, = 10~%s™".

V(m/s)
0.5}
———
// -\\
- ~~
o .
0 e
0.5 T
7(100 km)

Fig. 7. Horizontal distributions of the current after the
adjustment for different water depths.

Solid line: D = 5000 m; dashed line: D = 2500 m.
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P(mb)
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Fig. 8. Horizontal distributions of the pressure after the
adjustment for different water depths.

Solid line: D = 5000 m; dashed line: D = 2500 m.
clockwise sense emerges in the lower layer, which is just opposite to that in the upper
layer.
3. Characteristics of Geostrophic Equilibrium State in a Two-layer Model Ocean

For simplicity, we roughly divide the continuously stratified ocean into a simple
two-layer model ocean on the basis of the observed profile of N, in the real ocean, which
satisfies the following conditions (Fig. 9).

ﬁz*

Ns=Constant
_dl

TIIIIPTPIII77777727 77T T 777777777777

Fig. 9. Two-layer model ocean.

- {0, for the mixed layer, 0 < 2* < d,
" lconstant, for the deeper layer, d, < 2* < 0.

In the upper layer, since N,=0, the problem under consideration 'is the barotropie
adjustment process in which the flow field is independent of 2. Assuming the initial
unbalanced field and the solution of equilibrium state can be expressed as the wave
forms, the nondimensional solution of @, is thus given by

&i(z, y) = Re{ Qe =1}, (414)

* Tere asterisk is used to indieate the dimensional vﬁable.
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Roat (o .
Ly , K= J k' + 5* is the nondimensional wave number;

0

da, Py and P, denote the initial flow and pressure fields as well. as the geo-
strophic balanced flow field in the upper layer, respectively. Subscript “I" refers
to the variable in the upper layer and subseript “0” for the initial unbalanced field.

where Q, =

In the lower layer, assuming the nondimensional boundary conditions to be

8dn

3 = 0 and &, = & (z,y) by the matching principle, and having
2

(&1s Pors bon) = Re(Pule2), ﬁon(z): '.Z’on(z)>9’(k'+w)’ (4.15)

(subeript ‘‘II’’ is used to indicate the variable in the lower layer), we can obtain the
nondimensional solution of $;(2) as follows:

bn(z) = %ﬁ {Zroh AL +2) + i ”o_l W(E)sh A(z + 1 + E)dE

+ L-OW(g)sh AGE — 1 — 2)dE + L=-1 W(E)sh A(1 + & — z)dg]}
+L [ wEsmae - pa, (416)

where W(E) = _—62P°Ilz('5_) - Az%’:’on(E); 4= M: Ly = M

o% L f
Solution (4.16) implies that the characteristics of the geostrophic equilibrium state of
the Jower layer motions depend on the initial disturbance in the upper layer, the ver-
tical distribution of the initial unbalanced field in the lower layer and the horizontal
scale of disturbance field as well as the factors of stratification and water depth. Sev-
eral special cases are worthy of note as follows:

(1) Assuming the initial disturbance in the lower layer to be zero, hence

2 L 4
i (K) P h 41 + o)

du(e) = . (ﬁ), o A ; (4.17)

For a small-scale disturbance .

(. e. L< Ly, I’ € I}),
A. If ¢y 20, Py K Po; (or By == 0), then

du(z) = 1311(2) = o C_wiz_)

oh A ) _1<Z<0,

This means that the effects of the small-scale disturbance of the flow field in the upper

layer on the geostrophic equilibrium state in the lower layer become weak with increas-
ing depth of water.
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B. If Qor 2 0, for K Poy (or oy =~ 0), solution (4.17) can be approximately re-
duced to

A r ch A(1 + 2)
ou(z) = P :
n(z) KL o1 kA

Since

2
(—Q) &1 and MLI_:F_"Z) <1,
Ly ch A

we get

du(e) ~ 0, ﬁ"(z) ~ 0.
Hence the small-scale disturbance of the pressure field in the upper layer exerts small

influence on the geostrophic balance state in the lower layer. As a result, both the flow
and the pressure fields in the lower layer remain approximately unchanged.

Similarly, for the large-scale disturbance of the pressure field, the effects of the
initial disturbance field in the upper layer on the geostrophic equilibrium state in the
lower layer become weak with increasing depth of the water, while for the large-scale
disturbance of flow field, both the flow and the pressure patterns in the lower layer
are easy to maintain.

(2) The initial disturbance in the upper layer is assumed to be zero (i.e. @.=0).

A. If the initial unbalanced state mainly acts as the disturbance of the pressure,
i. e. doy =~ 0, and that Py is an invariant constant or linear function of 2z, then

Qz'n(z) =0, IA’“(z) =0,

Therefore, for the disturbance of pressure which is uniform or linear in the vertical,
the pressure field is adjusted to the flow field, so that the motion approaches the
geostrophic balance state. If

A 1
Py = ; ¢,

i. e. Py possesses the parabolic z-profile, then

» 1.[chA(1+z2 ] LK
= = —1|, A =222
dule) A? ch A L

For a small-scale disturbance, ¢n(2) = 0 because

2
l=( L ) <1 and

ch A1 +2)
4 \I,K

ch 4

1[<1.

Consequently, for the small-scale disturbance of pressure, the pressure field is ad-
Jjusted to the flow field, so that the motion approaches the geostrophic balance state.

By analogy, for a large-scale disturbance, since é > 1 and @A(&_j—z) —=1<0,
e

the geostrophic balance state is accomplished by the mutual adjustment between the

flow and the pressure fields.
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B. Provided that the initial unbalanced state mainly acts as the disturbance of
flow field (i.e. Py ~ 0) and ¢oy(2) = 1, i.e. the disturbance of flow which is uniform

in the vertical, we obtain from (4.16)

$n(e) =1 — chA(1+2)

ch A

It is concluded that the geostrophic equilibrium state is established by the adapta-
tion of the flow field to the pressure field for the large-scale disturbance (i.e.
Lp € LA € 1). The opposite conclusion is true for the small-scale disturbance (i.e.
L < Lp,A > 1). In addition, the more generalized cases of the problem are able to
be discussed by means of numerical computation and will not be mentioned here.

V. CONSERVATION OF PoTENTIAL VORTICITY IN NONLINEAR
PROCESS OF (GEOSTROPHIC ADJUSTMENT

By means of the small parameter expansion in Rossby number R, the governing
adjustment equations of the first-order approximation can be readily derived as

oV, 1

+ka V1=_'—VHP1+A, (5.1)
ot s
3 (Pl) 1 pl.
o\ ) =89 5.2
62 01 Ps ( )
Vy Vit 6;21 =0, (5.3)
Op Ps i
_671 = —gT NW, = 4, (5.4)
where A; = — (Vo « Vaupo + psWo -8 (ﬂ)) and
oz Ps

A=A1i+A3j=—(V0'VHVo+Wo aaVo)
2

represent the density advection and velocity advection, respectively. Subscript “1”
denotes the first-order variable, and “0” the zeroth-order variable.

Supposing N, to be a constant and combining Egs. (5.1)—(5.4) with a little math-
ematical manipulation, it leads to

2 [ i+ L0 (B)] = 224 _ g0 () toh

at ]—V—f 827 Ps Oz 8y N; 8z \p,
where ,
24, _ 04, _ _ [(qu(bo)(V};¢’o) + (Vi - VidVids + Wo -2~ (via0)
oxr oy . oz

¥ 0z 0Oz Oy Oz

EW., a'vo 6Wo 6’!&0]
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Nl ——
i |
an _f?_(ﬁi;s) ORpEES 1Y [vu : (&)Vo 4+ 0 (Wopo)]
62 p-l‘ az p: az p’ °

It is shown from Eq: (5.5) that the fir-st-order potential vorticity is no longer conserved!
pecause ©of the nonlfnear te_rl?ls comprising the zeroth-order variables, The local rate
of change in potential vorticity depends on the magnitudes of the zeroth-order nonlin-
egr terms such as the vorticity advection, the vertical transport of the horizontal vor-
ticity, the mass flux and nonlinear interaction between the vorticity and the diver-
gence fields. However, as was pointed out earlier™, in the geostrophic adjustment pro-
cess, the potential flow is much stronger than the rotational flow, and W is very impor-
tant for the baroclinie fluid. Therefore, we can further simplify the nonlinear terms.
Jgnoring the vorticity advection and the vertical transport of the horizontal vorticity im
the flow field as well as the horizontal transport of density in the mass field, that is,
taking account of nothing but the nonlinear interaction between vorticity and diver-
gence fields and the vertical transport of mass field, we have

B4, 04, _ 1 8 o2, .

(2= ~m o e o ()

o el e el el el e U B 5.6

9z \p; 2Nig ot Loz’ \9z \p, ] (5.6)
Substitution of (5.6) into (5.5) yields

O [E(B)+Zvie — Eviwr — L2 (2(2))] -0,

ot loz* \p,/  f 2f 2N? 82* \ 9z \ p,
or equivalently
P, , N* _;
ﬁi‘ ta Vid, = 9, (5.8)
where ‘
N? - f 8 (8H\ _ N? g 1 & (8 (P))\?
0 = 5 VZ 2+___( 0 _ 4V VZ _ _( (__u)).
b5 f3( HPo) SN 57 \ 8a 5 fa( hebo) TETTAY AW L

&, indicates the stream function of the zeroth-order equilibrium state; ¢; and Pj are
the initial disturbance stream function and pressure of the zeroth-order variables,
Tespectively; ¢, is the stream function of the first-order in the equilibrium state
(Note that the initial disturbances of the first-order (P,, ¢,) are assumed to be
Zero).

It follows that the potential vorticity for the first-order model is conserved in the
nonlinear geostrophic adjustment process only when the nonlinear effects of the poten-
tial flow and vertical flow are introdueed.

VI. CoNoLUDING REMARKS

From the foregoing discussion, the main results may be summarized as follows:.

(1) In the linear geostrophic adjustment process of large-scale motion, the hori-
zontal scale of motion is restricted to a certain extent, and such qualifications are-
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stronger in the atmosphere than in the ocean.

(2) 1In the response of the flow in the oceanic interior to a ste.ady ?vind field, the
energy of non-geostrophic disturbance is dispersed by the gra.vllty'-mertml.waves and
an unpropagating and over-damping wave caused by turbulent friction. Ultimately, the
surface wind stress and bottom frictional force approach the balance state so that a
quasi-geostrophic motion is established. In addition, the geostrophic adjustment becomes
faster in consideration of the effect of turbulent diffusion.

(3) The speed of the geostrophic adjustment is in inverse proportion to the hor-
izontal length scale but directly proportional to the intensity of stratification and
depth of water. The vertical structure of disturbance is only related to the amplitude
of waves, but is independent of the geostrophic adjustment speed.

(4) The limited bounds of ocean in the vertical direction directly affect the fea-
tures of the solution of geostrophic equilibrium state. In the ocean of finite depth, the
geostrophic equilibrium state is reached by the mutual adjustment between the flow
and the pressure fields. Moreover, it is easier to maintain the flow field unchanged
in the strong stratification or in the deep water than in the weak stratification or in the
shallow water. The opposite conclusion is true for the pressure field.

(5) In the two-layer model ccean, the effects of the small-scale disturbance of the
flow field in the upper layer on the geostrophic equilibrium state in the lower layer
become weaker with increasing depth of water, while the small-seale disturbance of the
pressure field in the upper layer has small influence on the geostrophie balance state
in the lower layer. The opposite results are true for the large-scale disturbance. In
addition, the characteristics of the geostrophic equilibrium state of the lower layer mo-
tions are closely related to the vertical structure of the lower layer disturbance. When
the initial unbalanced state mainly acts as the disturbance of pressure whose distri-
bution is uniform or linear in the vertical direction, the pressure field is adjusted to
the flow field so that the motion approaches the geostrophic equilibrium state. When
the initial unbalanced state mostly acts as the disturbance of flow which is uniform in
the vertical, for the large-scale disturbance the geostrophic equilibrium state is establi-
shed by the adjustment of the flow field to the pressure field. The opposite result is
true for the small-scale one.

(6) The potential vorticity of the first-order model i conserved when merely the
nonlinear potential flow and vertical transport of mass field are taken into considera-
tion for the nonlinear terms. '

Finally, it should be pointed out that all the discussions given above about the geo-
strophic adjustment process of the baroclinic ocean are only valid for the inviscid fluid
in which the turbulent frictional force and the source of heat can safely be neglected.
However, there exist the adaptation processes of motion to the exterior source of heat
and the interior turbulent frictional field in the real ocean. In the shallow sea, espe-
cially near the coastal zone, the nonlinear process and the effect of the lateral friction
become quite remarkable. Thus, it is more significant to deal with the response of the
ocean current to the external source of heat and the interior turbulent frictional field
as well as the nonlinear adjustment process with the effect of lateral friction. Certain-
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ly, all of these investigations will help us go deeper insight into the mechanism of the
interaction between the ocean and atmosphere as well as the dynamic processes in the
shallow sea. These problems remain to be further studied,

We would like to thank Gan Zijun and Liu Fengshu of the Institute of Oceano-

logy, Academia Sinica for their carefully reading the manuseript and giving helpful
comments,

REFERENCES

[1] Bolin, B. Tellus, 5(1953), 373—378.

[2] Veronis, G., Decp Sea Res., 3(1956), 157—177.

(3] MEIE, RN, KSBEFHHERFEE, MEHRE, 1965,

(4] BEK7E, BEXSTROEEYELM, (BB—4), BEdiKE, 1979.
(5] ¥EER, KSzHH%, THRHE MR, 1081,

[6] Bluman, E., J. Atmos. Sei., 24(1967), 325—332,

[7] y Rev. of Geophy. and Spaoc Phys., 10(1972), (2): 485—528.





{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}




{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":false}



