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A B S T R A C T

Massachusetts Bay (MB)/Boston Harbor (BH) in the northeastern United States has reduced buffering capability, 
making it highly vulnerable to ocean acidification (OA). We applied the U.S. Northeast Biogeochemistry and 
Ecosystem Model (NeBEM), integrating the unstructured grid, Finite Volume Community Ocean Model with a 
modified European Regional Seas Ecosystem Model (ERSEM), to investigate seasonal and interannual OA vari
ability through one-dimensional (1-D) experiments. Objectives were to (a) evaluate model skill in reproducing 
observed seasonal cycles of OA-related variables, particularly pCO2 and pH, in shallow and deep regions, and (b) 
assess sensitivity to parameterizations and algorithms for calculating dissolved inorganic carbon (DIC), total 
alkalinity (TA), pCO2, and pH. The 1-D NeBEM reproduced variability of nutrients, dissolved oxygen, 
chlorophyll-a, pCO2, and pH at the deep outer bay site, where air-sea interactions dominate, but failed at the 
shallow inner bay site due to the absence of river discharge-driven advection. Of TA algorithms tested, the semi- 
diagnostic method best captured observed seasonal pCO2 variation, achieving the highest correlation and lowest 
root mean square error, although all methods performed similarly for pH. Comparisons with multi-linear 
regression methods showed that empirical models are highly sensitive to calibration set. Mechanistic analysis 
indicated that TA variability is mainly regulated by nitrification and net community production (NCP), while DIC 
variability is driven primarily by NCP. Atmospheric CO₂ loading was the first-order contributor to DIC change in 
magnitude. However, it has decreased in MB over the past two decades, in contrast to regional and global trends. 
Therefore, it is not a major driver of OA progression in this system.

1. Introduction

The increasing atmospheric CO2 loading into the ocean is altering the 
marine carbonate system through enhanced CO2-seawater reactions that 
produce carbonic acid (H2CO3) (Zeebe and Wolf, 2001). This process 
releases hydrogen ions (H+), lowering ocean pH and driving ocean 
acidification (OA) (Steinacher et al., 2009; Takahashi et al., 2014). OA is 
now evident across the global ocean, particularly in the North Pacific 
and North Atlantic (Dore et al., 2009; Santana-Casiano et al., 2007). For 
example, at Station LOHA (Long-term Oligotrophic Habitat Assessment) 
in the North Pacific subtropic gyre, pH has decreased from 8.13 to 8.03 
over the last 30 years (Dore et al., 2009). This acidification reduces 

carbonate ion (CO3
2-) availability, making it more difficult for calcifying 

organisms such as corals, plankton, and shellfish to build and maintain 
shells or skeletons (Tracey et al., 2013).

Massachusetts Bay (MB) and Boston Harbor (BH), located in the 
western coastal area of the Gulf of Maine, form a semi-enclosed 
embayment with its main outlet bounded by Cape Ann to the north 
and Cape Cod to the south (Fig. 1). The region supports productive 
shellfish beds, including oysters, scallops, clams, and mussels, which 
provide habitat, stabilize sediments, and filter water. These ecosystems 
are vulnerable to both the global rise in atmospheric CO2 and local 
stressors such as nutrient enrichment and eutrophication. The Massa
chusetts Special Legislative Commission on OA (MSLC, 2021) reported 

* Corresponding author.
E-mail addresses: lwang1@umassd.edu (L. Wang), c1chen@umassd.edu (C. Chen), jes2@unh.edu (J. Salisbury), sli4@umassd.edu (S. Li), suebeardsley2@ 

comcast.net (R.C. Beardsley), jackie@neracoos.org (J. Motyka). 

Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

https://doi.org/10.1016/j.ecolmodel.2025.111459
Received 4 September 2025; Received in revised form 2 December 2025; Accepted 18 December 2025  

Ecological Modelling 513 (2026) 111459 

Available online 24 December 2025 
0304-3800/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://orcid.org/0000-0002-3089-6261
https://orcid.org/0000-0002-3089-6261
https://orcid.org/0000-0001-8715-6101
https://orcid.org/0000-0001-8715-6101
https://orcid.org/0000-0002-1415-9384
https://orcid.org/0000-0002-1415-9384
https://orcid.org/0009-0004-5470-0624
https://orcid.org/0009-0004-5470-0624
mailto:lwang1@umassd.edu
mailto:c1chen@umassd.edu
mailto:jes2@unh.edu
mailto:sli4@umassd.edu
mailto:suebeardsley2@comcast.net
mailto:suebeardsley2@comcast.net
mailto:jackie@neracoos.org
www.sciencedirect.com/science/journal/03043800
https://www.elsevier.com/locate/ecolmodel
https://doi.org/10.1016/j.ecolmodel.2025.111459
https://doi.org/10.1016/j.ecolmodel.2025.111459


that these combined pressures heighten shellfish vulnerability, leading 
to reduced shell formation and increased mortality, especially at larval 
stages. Recommended mitigation and adaptation strategies include 
enhanced monitoring, wetland restoration, and nutrient reduction 
through updated regulations and community-based programs.

The severity of OA can be assessed using a combination of carbonate 
system metrics, including seawater pCO2 from air-sea gas exchanges and 
net respiration (Signorini et al., 2013), the aragonite saturation state (Ωa) 
as an indicator of calcification potential (Morse et al., 2007); and buffer 
capacity – often expressed as the total alkalinity (TA) to dissolved 
inorganic carbon (DIC) ratio, which reflects the ability of seawater to 
resist pH change when CO2 is added or removed. In MB/BH, buffer ca
pacity is shaped by the interplay of carbonate chemistry with local 
biogeochemical and physical processes, including TA supply from 
weathering, groundwater, denitrification, and carbonate dissolution, 
and TA removal via nitrification, calcification, and dilution. These 
processes are further modulated by biological production, mixing, and 
air–sea CO2 fluxes (Wang et al., 2013).

Biogeochemical variables such as pH, pCO2, Ωₐ, TA, and DIC are 
critical inorganic carbon parameters that can be determined using 
empirical tools like CO2SYS (Carbon Dioxide System, Lewis et al., 1998) 
or polynomial/multi-linear regression functions (McGarry et al., 2021), 
or simulated with coupled physical–biogeochemistry models. The latter 
are particularly valuable for capturing spatial and temporal interactions 
between circulation and ecosystem processes. Structured-grid examples 
include the Potomac Eutrophication Model (PEM; HydroQual, 1991) for 
Chesapeake Bay; CE-QUAL-W2, a 2-D hydrodynamic–water quality 
model used in estuaries and lakes (Sullivan et al., 2013); the Water 
Quality Analysis Simulation Program (WASP), adapted and simplified 
from PEM for water quality studies (Nikolaidis et al., 2006); and the Gulf 
of St. Lawrence Biogeochemical Model (GSBM; Lavoie et al., 2021). 
Unstructured-grid applications include FVCOM-ICM, the 3-D version of 
the CE-QUAL-ICM water quality model originally developed by Cerco 
and Cole (1994), upgraded to an unstructured-grid framework by the 
FVCOM development team at the University of 
Massachusetts-Dartmouth, and later enhanced for the Salish Sea 
(Khangaonkar et al., 2012); and the European Regional Seas Ecosystem 
Model (ERSEM; Butenschön et al., 2016), which simulates 
lower-trophic-level food webs, carbonate chemistry, and calcification, 
and can be coupled to FVCOM through its generalized ecosystem mod
ule. Unlike data-based empirical methods, these modeling approaches 
explicitly resolve coupled physical-biogeochemical processes such as 
mixing, advection, and nutrient–carbon interactions (Butenschön et al., 

2016; Wang, 2023).
We established the Northeast Biogeochemistry and Ecosystem Model 

(NeBEM) by coupling FVCOM with a regionally adapted ERSEM. The 
goal was to investigate complex OA processes in the northeastern U.S. 
coastal ocean and to build a predictive tool for stakeholders. While 
configuring NeBEM for MB/BH, several key questions emerged. First, is 
a three-dimensional model necessary to understand OA variability in 
coastal waters? If atmospheric CO2 loading is the dominant driver, air- 
sea gas exchange might be represented as a one-dimensional process 
instead. Second, like other biogeochemical or ecosystem models, ERSEM 
contains numerous parameters that are highly region-specific. In 
contrast to hydrodynamic models, where parameter sets are often 
transferable, the biological, chemical, and ecological processes in the U. 
S. Northeast differ substantially from those in the European seas for 
which ERSEM was originally tuned. Adapting ERSEM to NeBEM there
fore requires parameter reconfiguration based on regional literature and 
extensive observational datasets. This raised the question of whether the 
adjusted model could reliably reproduce the seasonal and interannual 
variability of key OA variables in MB/BH. Third, ERSEM offers multiple 
approaches; diagnostic, prognostic, and semi-diagnostic, for calculating 
TA. In addition, various empirical methods estimate pH and pCO2 from 
temperature, salinity, dissolved oxygen (DO), and nitrate using multi- 
linear regression equations. Identifying the most suitable approaches 
for MB/BH is essential for improving model accuracy and applicability.

To address these questions, we conducted 1-D simulations for 
1995–2016 at representative deep and shallow sites in MB/HB. This 
paper focuses on exploring the driving mechanisms of OA in outer and 
inner bay regions by simulating seasonal and interannual variability of 
key acidification-related biogeochemical variables. The goals include 
optimizing a set of biological parameters, assessing model sensitivity to 
parameterization, and comparing empirical methods with NeBEM in 
determining pH and pCO2.

The remainder of this paper is organized as follows. Section 2 de
scribes the model configuration, experimental designs, observational 
datasets used for model validation, and methods applied to estimate pH, 
DIC, Ωₐ, and TA. Section 3 presents the model-data comparisons for 
NeBEM simulations over 1995–2016. Section 4 compares diagnostic, 
semi-diagnostic, and prognostic methods in ERSEM for calculating pH 
and pCO2, followed by estimates of the contributions of critical pro
cesses to TA and DIC. This section also includes a sensitivity analysis for 
pCO2 and Ωₐ, and comparisons of CO2SYS and regression methods with 
both observations and NeBEM results. Section 5 summarizes the major 
outcomes.

Fig. 1. Locations of outer (F22) and inner (S024) bay sites in Mass Bay (a) and vertical profiles of initial temperature and salinity at F22 (b-c) and S024 (d-e). Red 
diamonds: The DIC sampling stations taken in 2017. Purple dots: sewage outfall locations. Blue triangles: rivers located from north to south named the Saugus, 
Mystic, Charles, Neponset, North, and Jones Rivers.
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2. The NeBEM, experimental designs, observational data, and 
methods

2.1. The NeBEM

The NeBEM was established by coupling the regional FVCOM in the 
Northeast Coastal Ocean Forecast System (NECOFS; Chen et al., 2025) 
with a regionally adapted version of the European Regional Seas 
Ecosystem Model (ERSEM; Butenschön et al., 2016). The 1-D model used 
in this study is a simplified derivative of the fully 3-D unstructured-grid 
NECOFS framework. For this application, we configured the model with 
a control volume composed of six equilateral triangular cells in the 
horizontal direction and assumed zero horizontal gradients. This design 
preserves the essential structure of the 3-D model while allowing us to 
focus strictly on vertical processes. It also provides a straightforward 
pathway for scaling the experiment back up to a full 3-D configuration 
once key 1-D dynamics are better understood (Fig. 2). In the current 
study, the 1-D model is driven exclusively by atmospheric for
cing—surface solar radiation, 10-m wind, and freshwater-salinewater 
fluxes expressed as precipitation minus evaporation (P–E). When P-E 
is positive, surface salinity decreases, whereas a negative P-E leads to an 
increase in salinity. P–E was not applied arbitrarily, instead, P–E was 
adjusted to follow the observed salinity tendencies at each site. No 
boundary information from the 3-D model is required. By removing 
horizontal advection and exchange processes, this setup enables us to 
isolate and examine the vertical biogeochemical responses without the 
confounding influence of lateral transport, which will be addressed in 
future 3-D simulations.

ERSEM, developed by the Plymouth Marine Laboratory, U.K., rep
resents the lower-trophic- level food web through autotrophic and het
erotrophic processes, spanning both microbial and benthic pathways, 
carbonate chemistry, and calcification (Butenschön et al., 2016). In the 
pelagic system, inorganic state variables comprise major chemical 
components of carbon; DIC, pCO2, pH, Ωₐ, and TA, along with nutrients 

such as nitrogen, phosphate, silicate, and iron. Organic state variables 
consist of four phytoplankton groups, bacteria, three zooplankton 
groups, and dissolved and particulate organic matter. The benthic 
module maintains the same inorganic variables as the pelagic system, 
while the organic pool contains microbes, zoobenthos, and dissolved 
and particulate organic matter. Due to the limited observational con
straints needed to fully parameterize benthic organic matter cycling, we 
employed a simplified benthic closure rather than a complete benthic 
module. In this configuration, remineralized benthic material is 
implicitly returned to the pelagic nutrient and carbon pools, rather than 
being explicitly resolved into multiple sediment compartments. This 
approach maintains mass balance within the biogeochemical system 
while allowing us to focus on water-column carbonate dynamics without 
requiring detailed benthic parameterization, which is currently un
available for MB/BH

In ERSEM, pH, pCO2, and Ωₐ are derived from hydrogen ion con
centration [H+], carbon CO2 concentration, and calcium, and carbonate. 
Given TA, DIC, and total boron, these variables are solved using the 
HALTAFALL iterative algorithm with an initial [H+] = 10–8 mol/kg 
(Ingri et al., 1967).

ERSEM offers three algorithms to calculate TA: diagnostic, prog
nostic, and semi-diagnostic. The diagnostic method estimates TA 
directly from either salinity or from salinity plus temperature without 
accounting for biogeochemical influences (Borges and Frankignoulle, 
1999; Bellerby et al., 2005; Millero, 1998; Lee et al., 2006). In this study, 
the diagnostic TA was computed using a linear function of salinity 
(Millero, 1998), given by 

TAdia = 520.1 + 51.24S (1) 

where TAdia is diagnostic TA and S is salinity. The prognostic method 
extends the diagnostic approach by adding the effects of biogeochemical 
processes, expressed as 

TApro = TAdia + TAbio (2) 

Fig. 2. Schematic of 1-D NeBEM, a coupled physical–biogeochemical modeling system combining FVCOM (physics) and ERSEM (biogeochemistry). The left panel is 
the 1-D grid structure. Cm is a general symbol representing scalar variables such as temperature, salinity and nutrients. • is the node of the triangles where scalar 
variable is calculated and ⌔ is the centroid of a triangle where the horizontal velocity is calculated. The right panel is the simplified NeBEM structure.
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where TAbio represents TA changes in TA due to ammonium source 
(FNH4), nitrate sinks (FNO3), phosphate sink (FPO4), calcification sources 
(Fcalc), calcite dissolution sinks (Fdiss), benthic remineralization source 
(Fremin), and nitrification sinks (Fnitri), combined as 

TAbio = FNH4 − FNO3 − FPO4 + 2(Fcalc − Fdiss) + Fremin − Fnitri (3) 

(detailed formulations in Butenschön et al., 2016). The 
semi-diagnostic algorithm further incorporates the effects of physical 
transports (advection, river input) and turbulent mixing (TAphy) along 
with the background TA at the initial state (TAbck), giving 

TAsemi− dia = TAbck + TAbio + TAphy (4) 

DIC is calculated from the combined contributions of air-sea CO2 flux 
(Fairco2), remineralization(FPremin ), bacterial respiration

(
FBresp

)
, phyto

plankton respiration and photosynthesis (FPresp − FPphyto ), zooplankton 
respiration (FZresp ), and calcification minus dissolution (Fcalc − Fdiss), 
along with transports and mixing (Fphy), expressed as 

DIC = Fairco2 + Fremin + FBresp +
(

FPresp − FPphyto

)
+ FZresp + (Fcalc − Fdiss) + Fphy

(5) 

The mathematical formulations for these terms are detailed in 
Butenschön et al. (2016).

ERSEM has been successfully applied to capture the carbonate sys
tem variability in the southern North Sea (Blackford and Gillbert, 2007) 
and the Northwestern European shelf (Artioli et al., 2012). De Mora et al. 
(2016) evaluated ERSEM based on emergent properties and ecosystem 
functions, reporting that it reproduced key ecosystem behaviors. Ge 
et al. (2021a, 2021b) extended the FVCOM-ERSEM coupling to include 
cohesive sediment processes and applied it to investigate the influence 
of suspended sediments on nutrients and phytoplankton dynamics in the 
Changjiang River Estuary.

2.2. Empirical methods to calculate pH and pCO2

We compared NeBEM with three empirical data-fitting methods for 

estimating pH and pCO2. The first two were developed by McGarry et al. 
(2021), who applied multiple linear regression (MLR) using biogeo
chemical predictors to estimate carbonate system parameters. The first, 
termed BGC+ model (“BGC” for biogeochemical and “+” indicating 
inclusion of all available predictors), uses temperature, salinity, DO, and 
nitrate as input variables. The second, the BGC+* model, retains the 
same MLR framework but applies adjustments or uses a reduced pre
dictor set to accommodate specific application or data limitations (the 
asterisk denoting a modified or trimmed configuration).

The third method uses CO2SYS v2.0 (van Heuven et al., 2011) to 
calculate pH and pCO2. In this approach, TA is computed using the 
semi-diagnostic algorithm, while DIC is estimated by fitting observed 
temperature and salinity to first-through fourth-order polynomial 
regression functions (Loukos et al., 2000; McGarry et al., 2021). Details 
of the polynomial fitting and parameterization are provided in Appendix 
A.

2.3. Experimental designs

The 1-D NeBEM experiments were conducted at two representative 
sites: MWRA monitoring station F22, located on 80-m isobath in the 
outer bay, and station 024 (hereafter referred to as S024), situated on 
the 12-m isobath in Boston Harbor (Fig. 1). These sites were selected 
based on previous observing system simulation experiments (OSSEs) in 
MB by Xue et al. (2012) and seasonal water quality mechanism studies 
by Xue et al. (2014). Those studies identified F22 as a location with 
maximum correlation to bay-wide variability, due to its connection with 
two key physical drivers: the upstream Western Maine Coastal Current 
and Merrimack River-induced low-salinity coastal plume, both of which 
strongly influence circulation and stratification. In contrast, S024 rep
resents a harbor ecosystem where biogeochemical conditions are shaped 
primarily by local freshwater outflows, largely decoupled from outer 
bay physical processes.

Simulations covered the period 1995–2016. Initial vertical temper
ature and salinity profiles were taken from the NECOFS reanalysis (Chen 
et al., 2021) for January 1, 1995. At that time, both sites exhibited colder 
surface waters and warmer bottom waters, with a surface-bottom tem
perature difference of ~0.8 ◦C at F22 and ~0.5 ◦C at S024 (Fig. 1). 
Salinity at S024 was vertically uniform at ~30.8 PSU, while at F22 the 
upper 60 m was well-mixed, with salinity increasing toward the bottom 
and a surface-bottom difference of 0.3 PSU. Thus, S024 represents 
fresher onshore conditions, and F22 salter offshore conditions.

The 1-D model was forced at the surface with wind stress and heat 
flux from hourly NECOFS meteorological product, including net heat 
flux, shortwave radiation, and 10-m wind speed (Fig. 3). Vertical tur
bulent mixing in the 1-D NeBEM is resolved using the Mellor–Yamada 
level-2.5 (Mellor and Yamada, 1974) turbulence closure scheme 
embedded in FVCOM. The configuration follows the same approach 
used in the full 3-D FVCOM system. The Mellor-Yamada 2.5 scheme 
solves prognostic equations for turbulent kinetic energy and turbulence 
length scale, and the resulting fields are used to compute vertical mixing 
coefficients for momentum, heat, nutrients, and carbonate-system 
tracer. Over the 22-year period, the seasonal cycle of net heat flux was 
consistent, with summer variation up to 43 W/m2 driven mainly by 
shortwave radiation changes, and winter variation up to 177 W/m2 

largely due to sensible and latent heat fluxes. Monthly-mean wind 
speeds averaged ~8.0 m/s in winter and ~5.0 m/s in summer, with 
interannual monthly variations reaching ±4.0 m/s. All state biological 
and chemical variables were initialized with constant values.

2.4. Data used for model validation and mode skill assessment methods

The 1-D numerical experiments were designed to evaluate the 
model’s ability to reproduce observed seasonal cycles of OA-related 
variables, especially pCO2 and pH, in both shallow and deep areas of 
MB. Model skill was assessed for temperature, salinity, nutrients 

Fig. 3. Changes in the daily net heat flux (a), short wave radiation (b), and 
wind speed (c) averaged over 1995–2016. Black line: the multi-yearly-averaged 
daily mean. Gray shadow: the standard deviation. Red dashed line: the zero 
line. Note: the model was driven by hourly forcing.
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(nitrate, ammonium, phosphate, and silicate), chlorophyll-a (Chl-a), 
DO, pCO2, and pH. Simulated variables were first visually compared 
with observations at F22 and S024 over 1995–2016. Because both 
physical and biochemical variables showed consistent seasonal patterns 
during this period, comparisons used 22-year monthly means and 
standard deviations for surface and bottom layers. Seasonal variability 
of vertical profiles was also examined at F22. Seasons were defined as: 
winter (December to February), spring (March to May), summer (June 
to August), and fall, (September to November). Model parameters are 
listed in Table A-1 (Appendix B), with parameter sensitivity analysis also 
provided there.

Direct in-situ pCO2 and pH measurements at F22 were unavailable 
for 1995–2016. Instead, we used all surface pCO2 data within a 10-km 
radius of F22 from Lamont-Doherty Earth Observatory (LDEOv2019, 
Takahashi et al., 2020) dataset and compared their averages with 
simulated results. For pH, the closest station with long-term measure
ments was N04 (9.9 km from F22) with similar stratification. Monthly 
pH data from 2006 onward were directly compared to simulated pH at 
F22 without spatial corrections. The in-situ pCO2 measurement data 
have already incorporated long-term anthropogenic carbon trends.

Observations of temperature, salinity, nutrients, DO, Chl-a, and pH 
(total scale) at F22 (pH from N04) and S024 over 1995–2016 were 
provided by MWRA. Sampling at F22 was roughly monthly at five 
depths, and weekly at surface and bottom for S024. Surface pCO2 for the 
U.S. Northeast shelf came from LDEOv2019 dataset provided by NOAA. 
Surface pH was derived from the World Ocean Database (WOD18, Boyer 
et al., 2018) and MWRA measurements near BH. TA and DIC were 
measured monthly in 2017 at four stations surrounding F22 (Fig. 1), 
provided by the MIT Sea Grant (personal communication with Carolina 
Bastidas at MIT Sea Grant). pH measurements before the 1990s used 
varying standards, calibration methods, and electrode technologies. 
Lacking sufficient metadata, no post-calibration was attempted. Differ
ence between pre-1990 pH and modern pH measurements may reach 0.2 
units (Anes et al., 2019); thus ±0.2 was added to reflect measurement 
uncertainty for 1990s data.

Model skill was quantified using the Cost Function (CF; OSPAR et al., 
1998; Gibson et al., 2006), Percentage of Bias (PB; Allen et al., 2007; 
Maréchal, 2004), and Adjusted Relative Mean Absolute Error (ARMAE; 
Sutherland et al., 2004): 

CF =

∑
|M − O|

nσO
(6) 

PB =

∑
(M − O)
∑

O
× 100 (7) 

ARMAE =
〈|M − O| − OE〉

〈|O|〉
(8) 

Here, O and M represent the observed and simulated variables, n is 
the number of samples, σO is the observed standard deviation, and OE is 
observational error. OE values differed by variable: 0.02 ◦C for tem
perature (Olsen et al., 2016), 0.02 PSU for salinity (Olsen et al., 2016), 2 

% for nutrients and DO (Melrose et al., 2015; Olsen et al., 2016), 0.1 
mg/m3 for Chl-a (Olsen et al., 2016), 2.5 μatm for pCO2 (Takahashi et al., 
2020), and 0.001 for pH. The angular brackets 〈 〉 in ARMAE indicate 
averaging, and ARMAE is set to zero if the numerator is negative. Scores 
for CF, PB, and ARMAE are categorized into four performance levels: 
excellent/very good (E/VG), good (G), reasonable (R), and poor/bad 
(P/B), as defined and color-coded in Table 1.

2.5. Methods used to estimate changes in TA and DIC

Following the model’s demonstrated ability to reproduce the sea
sonal variability of OA-related biogeochemical variables, we quantified 
the relative contributions of key biogeochemical processes to changes in 
TA and DIC. The vertically averaged rates of change for TA and DIC can 
be expressed as: 

∂TA
∂t

= RNCP + RCD + RRemin + RDN (9) 

∂DIC
∂t

= RNCP + RCD + RAS + RRemin (10) 

Here, R denotes the rate of a specific process, the overbar represents 
vertically averaging. Subscripts denote: NCP refers to net community 
production, CD to calcification minus dissolution, Remin to remineral
ization, DN to denitrification via nitrification, and AS to air–sea CO2 
exchange. The daily changes in TA and DIC can be written as: 

ΔTA (t) =
∫t

to

(RNCP + RCD + Rremin + RDN)dt

= ΔFNCP(t) + ΔFCD(t) + ΔFremin(t) + ΔFDN(t)

(11) 

ΔDIC (t) =
∫t

to

(RNCP + RCD + RAS + Rremin)dt

= ΔFNCP(t) + ΔFCD(t) + ΔFAS(t) + ΔFremin(t)

(12) 

To assess anomalies relative to the linear trend, we define: 

ΔTA (t) = ΔFʹ
NCP(t) + ΔFʹ

CD(t) + ΔFʹ
remin(t) + ΔFʹ

DN(t) + ΔSLTTA(t)
(13) 

ΔDIC(t) = ΔFʹ
NCP(t) + ΔFʹ

CD(t) + ΔFʹ
AS(t) + ΔFʹ

remin(t) + ΔSLTDIC(t)
(14) 

where the prime (’) indicates the anomaly after removing the linear 
trend, and ΔSLTTA(t) and ΔSLTDIC(t) represent the sum of linear trend 
values for each term in Eqs. (11) and (12), respectively.

2.6. Parameter sensitivity analysis method

A parameter sensitivity analysis was conducted to identify the pa
rameters most critical to the model’s performance. The approach follows 
the standard method widely applied in ecosystem modeling (Frank et al., 

Table 1 
Performance categories for CF, PB, and ARMAE.

Note. CF: Cost Function; PB: Percentage of Bias; ARMAE: Adjusted Relative Mean Absolute Error. No reasonable score is defined for PB.
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1986; Fasham et al., 1990; Chen et al., 1999; Ji et al., 2006).
Each parameter was perturbed individually by 1 % from its baseline 

value, and sensitivity index was calculated as: 

Ŝ =

⃒
⃒
⃒
⃒
ΔF/F
Δα/α

⃒
⃒
⃒
⃒ (15) 

Where F is the model output variable, α is the parameter value, ΔF is 
the change in the variable, and Δα is the change in the parameter. The 
model is considered sensitive to a parameter if Ŝ > 0.5. A detailed dis
cussion of parameter values and their sensitivity is provided in Appendix 
B.

3. Results

3.1. Seasonal and interannual variations of temperature, salinity 
nutrients, DO and Chl-a

Temperatures. The 1-D NeBEM effectively reproduced the observed 
seasonal cycles and interannual variability of surface and bottom 
temperature and consequently stratification at both the deep 
offshore site F22 and the shallow nearshore site S024 (Fig. 4 a1-a2, 
b1-b2). Water temperatures in MB varied markedly with the sea
sons. At the surface, values ranged from 2.6 to 4.6 ◦C in winter, rose 
sharply through spring, peaked at 17.9–21.0 ◦C in summer, and 
declined rapidly in fall. Seasonal changes in both shallow and deep 
regions generally tracked the surface net heat flux. The water column 
was well mixed in winter, while stratification developed in spring 
and persisted through fall. It intensified with water depth, weak at 
the site S024 and much stronger at the site F22. The maximum 
surface-bottom temperature difference reached 2.5 ◦C at S024 and 
~12.2 ◦C at F22. At S024, surface and bottom temperatures fluctu
ated in phase, whereas at F22 they followed asynchronous cycles: 

Fig. 4. Comparisons of simulated and observed surface and bottom tempera
tures (T) and salinities (S) at F22 (a1-a4) and S024 (b1-b4). Black lines: the 
simulated daily means averaged over 1995–2016. Red line: observed monthly 
means averaged over 1995–2016. Gray shadows: the standard deviations 
relative to the multi-yearly-averaged daily means. Vertical bars: the observed 
standard deviations.

Fig. 5. Comparisons of simulated and observed surface and bottom nitrates and phosphates at F22 (a1-a4) and S024 (b1-b4). Black lines: the simulated daily means 
averaged over 1995–2016. Red line: observed monthly means averaged over 1995–2016. Gray shadows: the standard deviations relative to the multi-yearly-averaged 
daily means. Vertical bars: the observed standard deviations.
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bottom waters warmed gradually from spring to late fall, reaching 
their peak in November. These seasonal patterns were stable over 
time and unaffected by regional climate-driven warming.

Interannual variability was minimal in winter, when strong mixing 
dominated, and more pronounced from spring through fall. At F22, sea 
surface variability was larger (~±1 ◦C in winter and ~±1.5 ◦C in spring 
through fall over 1995–2016) than at the bottom (~±0.9░∘C year- 
round). At S024, variability was similar throughout the water column. 

Salinities. At the deep site F22, near-surface salinity was primarily 
influenced by freshwater discharge from the Merrimack River, with 
annual maxima occurring in spring (Fig. 4 a3). While the seasonal 
pattern was consistent, its magnitude varied among years, with the 
largest interannual fluctuation (~±1.3 PSU) in spring. Bottom wa
ters consistently reflected the Gulf of Maine water characteristics, 
with salinity near 32.5 PSU (Fig. 4 a4; Chen et al., 1995). Stratifica
tion isolated these waters from surface variability, producing mini
mal seasonal change and low interannual variability (~±0.3 PSU), 
roughly one-third that of the surface.

At the shallow site S024, near-surface salinity showed stronger sea
sonal variability (Fig. 4 b3-b4). Values dropped sharply in spring due to 
the elevated river runoff, recovered in late spring as runoff decreased 
and mixing with interior bay water increased, remained stable during 
summer, and declined gradually in fall. The largest interannual vari
ability (∼ ±4.0PSU) occurred in spring. The site also experienced strong 
spring stratification, with a maximum surface-bottom salinity difference 
of ~3.4 PSU observed in April While bottom salinity exhibited little 
seasonal variation, its interannual range was substantial, reaching 
(~±3.4 PSU) in April over 1995–2016. 

Nutrients. The NeBEM includes five major nutrients: nitrate (NO3), 
ammonium (NH4), phosphate (PO4), silicate (SiO4), and iron (Fe, not 
included in these experiments). Here, nitrate and phosphate are 
presented as representative examples to evaluate model perfor
mance. The 1-D NeBEM successfully reproduced the seasonal cycles 
of nitrate and phosphate at both the surface and bottom at the deep 
site F22, but performed poorly at the shallow site S024.

At F22, observed nitrate concentrations were vertically uniform in 
winter, differentiated between surface and bottom from spring through 
fall, and returned to vertically homogeneity in early winter due to wind- 
driven mixing and surface cooling (Fig. 5 a1-a2). Near-surface nitrate 
declined rapidly in spring because of phytoplankton uptake in the upper 
euphotic layer, remained low through summer, and increased gradually 
in fall. Near-bottom nitrate changed little in winter but rose steadily 
from spring through fall as a result of heterotrophic processes (remi
neralization, nitrification, benthic flux) and Gulf of Maine water intru
sion, before decreasing again under wind mixing. Phosphate at this site 
followed a similar seasonal pattern (Fig. 5 a3-a4).

At F22, monthly means (1995–2016) showed nitrate concentration 
of ~5.0 μM at both surface and bottom in January-February, < 1.0 μM at 
the surface, and ~7.0–8.0 μM at the bottom from April to October, and 
~4.0 μM at both depths in December. Interannual variability ranged 
from ±2.0 to ±3.0 μM, larger in winter-spring and smaller in summer.

At S024, nitrate exhibited strong seasonality, decreasing from 
January to June, reaching a minimum in July to August, and increasing 
from September to December. Surface nitrate averaged over 1995–2016 
peaked at ~13.3 μM in winter and fell to ~1.5 μM in summer, with 
interannually variability of ±1.7–5.5 μM (Fig. 5 b1). Bottom nitrate 
followed the same seasonal cycle but with lower extremes (maximum 
~9.5 μM, minimum ~1.0 μM) and smaller interannual variability (~ 
±0.6–3.2 μM, Fig. 5 b2). The marked surface-bottom nitrate differences 
indicate that S024 is not vertically well mixed, which stratification 

Fig. 6. Comparisons of simulated and observed surface and bottom DO and chlorophyll-a (Chl-a) concentrations at F22 (a1-a4) and S024 (b1-b4). Black lines: the 
simulated daily means averaged over 1995–2016. Red line: observed monthly means averaged over 1995–2016. Gray shadows: the standard deviations relative to the 
multi-yearly averaged daily means. Vertical bars: the observed standard deviations.
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largely maintained by freshwater inputs from multiple rivers.
In contrast, phosphate difference between surface and bottom at 

S024 were much smaller than that for nitrate (Fig. 5 b3-b4). The 
monthly mean phosphate averaged over 1995–2016 was ~1.0 μM in 
January, decreased gradually from February to April, reached a mini
mum (~0.4 μM) in April, increased steadily from May to September, and 
attained a second maximum (~1.3 μM) in October, remaining elevated 
through November-December. The largest interannual variability 
occurred in September-October, ranging up to ±0.5 μM at the surface 
and ±1.2 μM at the bottom. 

Dissolved oxygen. From 1995 to 2016, DO in MB displayed a pro
nounced seasonal cycle, peaking in April and reaching a minimum in 
November (Fig. 6 a1-a2, b1-b2). This pattern was consistent across 
years, with interannual variability ranging from ±0.3 to ±0.9 mg/L. 
The magnitude of surface-bottom differences depended on depth, 
being smaller at the shallow site S024 and more pronounced at the 
deep site F22. The 1-D NeBEM successfully reproduced the observed 
DO cycles at both sites, capturing not only the seasonal phasing but 
also at the concentration levels.
Chlorophyll-a. The Gulf of Maine ecosystem is characterized by 
spring and fall phytoplankton blooms (Tian et al., 2015). Although 
global warming has altered bloom timing (Record et al., 2019), the 
biannual bloom regimes has persisted over the past 25 years. In MB, 
however, spatial and temporal variability complicates the signal. 
Averaged over 1995–2016, the typical spring and fall bloom peaks 
were not evident in Chl-a concentrations at either F22 or S024 
(Fig. 6, a3-a4, b3-b4).

At F22, high interannual variability at the surface in February and 
October suggested episodic influence from regional spring and fall 
blooms. At S024, surface Chl-a concentrations varied substantially year 
to year, with a dominant seasonal mode characterized by variation 
pattern by a summer maximum.

The 1-D NeBEM simulated a distinct spring bloom at F22, with 25- 
year averaged Chl-a concentrations peaking in March (~ 5.8 μg/L at 
the surface, ~ 2.0 μg/L at the bottom). The model also indicated 
elevated concentrations in late October - early November, but these 
were insufficient to constitute a fall bloom. Overall, simulated concen
trations were of the same order of magnitude as observations at both 
surface and bottom, despite the absence of a clear fall signal.

Taken together, comparisons of simulated and observed tempera
ture, salinity, nitrate, phosphate, dissolved oxygen, and chlorophyll-a at 
F22 and S024 show that the 1-D NeBEM reliably captured the primary 
seasonal and interannual variability of lower trophic food web dynamics 
at the deep offshore site but performed less effectively nearshore. 
Additional comparisons of vertical profiles at F22 further demonstrated 
the model’s ability to reproduce the seasonal evolution of stratifications 
in temperature, salinity, nutrients, dissolved oxygen, chlorophyll-a, as 
well as their interannual variations (Fig. 7). Both observed and simu
lated profiles indicated a well-mixed winter state followed by spring-to- 
fall stratification, although the model tended to underestimate winter 
nitrate.

3.2. pH and pCO2 comparisons

Observed surface pCO2 in MB exhibits a distinct seasonal cycle: high 
in winter, declining through spring to a minimum in May, rising again 
during summer and fall, and returning to winter values by December 
(Fig. 8a). At the deep offshore site F22, the long-term mean (1995–2016) 
ranged from ~294 µatm in April to ~448 µatm in December, with 
interannual variability of ±30 µatm. The 1‑D NeBEM reproduces the 
seasonal phasing and the magnitude of interannual variability but ex
hibits an overall low bias of ~40 µatm.

Surface pH (2006–2016) is relatively low in February, changes little 
from May to October, and reaches a minimum in November (Fig. 8b). 
Values range from 7.8 to 8.1 with interannual variability up to ~0.2. 
Bottom pH shows a similar seasonal pattern but is ~0.1 lower during 

Fig. 7. Comparisons of seasonally averaged vertical profiles of simulated and observed variables, including temperature (T) (a1-a4), salinity (S) (b1-b4), nitrate 
(NO3) (c1-c4), phosphate (PO4) (d1-d4), DO (e1-e4), and chlorophyll-a (Chl-a) (f1-f4), at F22. Numbers 1–4: winter, spring, summer, and fall, respectively. Black 
lines: the simulated seasonal means averaged over 1995–2016. Red line: observed seasonally-means averaged over 1995–2016. Gray shadows: the standard de
viations relative to the multi-yearly averaged seasonal means. Vertical bars: the observed standard deviations relative to the multi-yearly averaged seasonal means.
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spring–summer, and its interannual variability is likewise ~0.1 smaller 
(Fig. 8c). The 1‑D NeBEM matches bottom pH well on multi‑year av
erages yet overestimates surface pH by ~0.2. Taken together, the model 
captures the seasonal structure and interannual spread but un
derestimates absolute pCO2 and overestimates surface pH.

On multi‑decadal scales, rising atmospheric CO2 has elevated sur
face‑ocean pCO2 globally. Open‑ocean syntheses report increases of 
~1.6–1.9 µatm yr⁻¹ (≈16–19 µatm per decade), with estimates from 
other analyses around 1.36 ± 0.16 µatm yr⁻¹ (Takahashi et al., 2009; 
Takahashi et al., 2020; Landschützer et al., 2016; Denvil‑Sommer et al., 

2019). Over the 21‑year span of our record (1995–2016), this implies an 
anthropogenic offset on the order of ~30 µatm (using ~1.5 µatm yr⁻¹ for 
a conservative central value). Incorporating this secular increase into 
model forcing would raise the simulated seasonal baseline of pCO2, 
plausibly accounting for a substantial fraction of the ~40 µatm low bias 
while preserving the correctly simulated seasonal shape and interannual 
amplitude. By the same token, including the anthropogenic signal would 
modestly depress modeled surface pH on decadal scales, narrowing the 
~0.2 high bias relative to observations.

3.3. Quantitative model skill assessment

The statistical skill metrics — cost function (CF), percentage bias 
(PB), and accumulated root mean absolute error (ARMAE) — were 
computed for key physical, biogeochemical, and chemical variables at 
the deep offshore site F22. These variables include temperature (T), 
salinity (S), nitrate (NO3), ammonium (NH4), phosphate (PO4), silicate 
(SiO4), DO, Chl-a, pCO2, and pH (Table 2).

Overall, the 1-D NeBEM demonstrated strong skill across most var
iables. Performance for T, S, DO, and pCO2 reached the Excellent/Very 
Good (E/VG) category for all three metrics. For pH, PB and ARMAE also 
indicated E/VG, while CF placed it in the Good (G) category. Nutrient 
simulations were generally robust: NO3, PO4, and SiO4 were in the E/VG 
range based on CF, Reasonable/Good (R/G) according to ARMAE, and 
Good (G) in PB. NH₄ showed mixed performance: E/VG in CF, indicating 
good overall consistency with observations, but poor in PB, reflecting a 
strong systematic bias, and only R in ARMAE, suggesting moderate 
relative errors. Among the nutrient variables, NH4 therefore stood out as 
the weakest in terms of balanced performance across all metrics. Chl-a 
skill levels were comparable to nutrients: E/VG for CF, G for PB, and 
R for ARMAE. These results indicate that the 1-D NeBEM is robust in 
simulating both lower-trophic ecosystem variables and carbonate sys
tem variables (pCO2 and pH) at the deep offshore site.

While CF, PB, and ARMAE together provide a robust framework for 
evaluating model skill, each metric has distinct strengths and limita
tions. CF combines accuracy and correlation into a single measure, 
making it valuable for summarizing overall model–data consistency, 
though it can obscure which specific error dominates. PB quantifies 
systematic over- or underestimation in percentage terms, providing a 
straightforward measure of bias but ignoring variability and error dis
tribution. ARMAE emphasizes normalized absolute deviations, making 
it sensitive to relative errors at low concentrations; however, this 
sensitivity can exaggerate error levels when observations are small. Used 
together, these three measures offer a sufficiently comprehensive 
assessment of model performance: CF highlights overall agreement, PB 
diagnoses systematic bias, and ARMAE evaluates relative deviations. 
Although additional indices, e.g., correlation coefficient, root mean 
square error (RMSE), could complement this framework in future 
studies, the present evaluation is adequate for identifying the main 
strengths and weaknesses of the 1-D NeBEM.

Fig. 8. Comparisons of simulated and observed pCO2 and pH values at F22 (a, 
b, and c). The pH comparison was made at the surface and bottom. No pCO2 
data were available at the bottom. Black lines: the simulated daily means 
averaged over 1995–2016. Red line: observed monthly means averaged over 
1995–2016. Gray shadows: the standard deviations relative to the multi-yearly- 
averaged daily means. Vertical bars: the observed standard deviations. The 
small-size image inserted in the top panel: the locations of the LDEO pCO2 
measurements (grey dots). Red dots: the data available within a 10-km radius 
centered at F22. The small images inserted in the middle and bottom panels: the 
nearest pH observation location relative to F22.

Table 2 
Statistical measure scores of the model performance at F22.

Note. T: temperature, S: salinity, NO3: nitrate, NH4: ammonium, PO4: phosphate, SiO4: silicate, DO: dissolved oxygen, and Chl-a: chlorophyll-a. Blue: excellent & very 
good. Green: good. Yellow: reasonable. Brown: poor & bad.
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4. Discussions

4.1. Limitations of 1-D NeBEM in shallow vs deep environments

The comparison between the observations and NeBEM results high
lights that the 1-D NeBEM performed very differently at the deep 
offshore site (F22) and the shallow estuarine site (S024). These 

differences arise from both physical and biogeochemical conditions. 
Physically, model performance for temperature was consistently better 
at F22 than at S024 (Fig. 4a1-a2 and b1-b2). At the shallow site, the 
model overestimated summer temperatures throughout the water col
umn. This bias likely reflects the absence of sediment heat flux in the 1-D 
NeBEM, which can be significant in estuaries. Kim and Cho (2011)
demonstrated that heat uptake by sediments can strong affect the 

Fig. 9. Changes of vertically averaged daily mean values (left panels) and rates (right panels) of each term in Eqs. (13) and (14) at F22. The line legends represent 
each term using their subscript labels. Dashed straight line: the sum of the linear trends for individual terms.

Fig. 10. Seasonal changes of pCO2 (a) and Ωa (b) relative to T, S, PO4, SiO4, DIC, and TA found in the sensitivity analysis. The relative contribution of each variable is 
represented by different color lines defined by the line legend.
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thermal budget, and they incorporated a sediment heat flux module into 
FVCOM to account for this effect. In our simulation, the flux term was 
not activated because no observed sediment temperature data were 
available for BH.

Simulating salinity is particularly challenging in the 1-D NeBEM, 
especially at S024, where multiple river discharges dominate variability. 
In this configuration, freshwater-salinewater was introduced only as 
surface precipitation and evaporation, thereby neglecting horizontal 
advection and riverine plume dynamics. This simplification allowed 
reasonable reproduction of surface and bottom salinity at F22, but the 
model failed to simulate either the seasonal or the interannual vari
ability at S024, particularly during the spring when river runoff peaks 
(Fig. 4b3-b4).

Errors in biogeochemical variables were more substantial at S024. 
While the model captured the primary physical cycles to some extent, it 
failed to reproduce nutrient cycles and phytoplankton blooms at S024 
(Figs. 5-6). This indicates that nutrient variability at the shallow site is 
largely governed by nearshore physical processes linked to multi-river 
runoff. Without advective nutrient supply, the heterotrophic processes 
embedded in the model could not sustain realistic seasonal nutrient 
cycles. Consequently, simulated Chl-a concentrations at S024 diverged 
markedly from observations. Even at F22, simulated interannual 
nutrient variability was smaller than observed (Fig. 5), suggesting that 
3-D advection, particularly GoM intrusions, plays an essential role in 
shaping nutrient distributions in the outer bay (Xue et al., 2014).

For DO, however, the model performed better. As noted by Xue et al. 
(2014), DO variability in MB is primarily controlled by air-sea exchange 
rather than horizontal transport. This is consistent with our results: the 
1-D NeBEM reproduced seasonal DO cycles at both the surface and 
bottom at S024, even though it could not resolve the observed stratifi
cation and nutrient dynamics.

4.2. Processes attributed to TA and DIC

The 1-D NeBEM results indicated that monthly mean surface DIC 
concentrations, averaged over 1995–2016, varied within a relatively 
narrow annual range of about 120 μmol/kg. The seasonal cycle was 
characterized by a gradual decrease from February to July, followed by 
an increase from September to December, with maximum concentra
tions occurring in January and minimum concentrations in August. In 
comparison, monthly mean surface TA exhibited only very small vari
ability, with fluctuations of just a few μmol/kg. The seasonal pattern of 
TA was marked by a slight increase from January to April, and a gradual 
decline from October to December, with relatively stable conditions 
during the summer months.

In the 1-D NeBEM framework, TA was estimated using a semi- 
diagnostic algorithm that incorporating both biological and phys
ical processes. The biological contribution is the net result of several 
terms: net nutrient uptake minus the sinks of oxidized nitrogen and 
phosphate, calcification minus dissolution, remineralization, and nitri

Fig. 11. Left panels: Changes of annual averaged observed pCO2 and pH over 1920–2020 in Mass Bay (MB), Boston Harbor (BH), and the Gulf of Maine (GoM) (a1-a2 
and b1-b2). Filled dots: regional averaged data and straight lines: the linear regression trend. Right panels: Field survey tracks and sampling locations in MB and BH 
(a3) and the GoM (b3). Light-red shade in b2 represents the uncertainty range of pH before 1990s.
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fication. The physical contribution is primarily regulated by vertical 
mixing. DIC dynamics in the model are more complex, as they are 
influenced by multiple interacting processes. Sources include bacteria, 
phytoplankton, and zooplankton respiration, sinking organic matter 
from phytoplankton photosynthesis, benthic remineralization, calcifi
cation, dissolution of calcite, and vertical mixing. DIC is also strongly 
affected by the air-sea CO2 flux, which can act as either a source or sink 
depending on the direction of exchange. The relative contributions of 
these processes to TA and DIC were quantified at the offshore deep- 
water site F22 based on Eqs. (4) and (5), with results summarized in 
Fig. 9.

Changes in TA were dominated by the balance between new com
munity production and nitrification. Calcification and dissolution were 
approximately balanced under the prevailing saturation conditions, 
while remineralization played a negligible role (Fig. 9a1). Positive 
changes in ΔFʹ

NCP(t) reflected an autotrophic ecosystem with a net 
organic matter production. Nitrification is an aerobic process that con
sumes oxygen and decreases TA by producing hydrogen ions. In 
contrast, denitrification is an anaerobic process that occurs under low- 
oxygen conditions and increases TA by removing hydrogen ions with 
nitrate reduced to nitrite. Model results suggest that nitrification 
generally outweighed denitrification, producing net negative changes in 
ΔFʹ

DN(t). Both ΔFʹ
NCP(t) and ΔFʹ

DN(t) peaked during the spring bloom 
period (Fig. 9a2), but with opposite effects on TA. Their combined dif
ference yielded the largest seasonal variability in TA, with maxima in 
spring. Even though the amplitude of TA variability was underestimated 
due to the limitations of the 1-D framework, the simulation showed that 
TA changes were primarily controlled by NCP, counteracted by 
nitrification.

Changes in DIC were largely determined by the balance between net 
community production and air-sea gas exchanges, while calcification, 
dissolution, and remineralization contributed negligibly (Fig. 9b1). In 

Eq. (5), the contribution of ΔFʹ
NCP(t) was consistently negative, acting as 

a sink that reduced DIC due to phytoplankton photosynthesis. Air–sea 
exchange (ΔFʹ

AS(t)) exhibited a seasonal pattern in which the ocean 
absorbed atmospheric CO2 during spring and summer and released it 
during fall and winter. This resulted in positive ΔFʹ

AS(t) during the up
take period, but its contribution remained secondary compared to NCP. 
The seasonal trajectory of DIC thus closely followed NCP dynamics. 
ΔFʹ

NCP(t) increased in January–February, peaked in March, and then 
rapidly decreased as phytoplankton photosynthesis intensified during 
the spring bloom. From spring through summer, ΔFʹ

NCP(t)remained 
negative, reaching its minimum in July, reflecting strong autotrophic 
activity. The combined effect of NCP and air–sea flux drove DIC changes 
negative by mid-March, with the strongest reduction occurring in 
August (Fig. 9b2).

4.3. Drivers of seasonal variability in pCO2 and Ωa

The relative contributions of temperature, salinity, DIC, TA, and 
nutrients (SiO4, PO4) to the seasonal cycles of pCO2 and Ωa were eval
uated using the sensitivity analysis approach of Signorini et al. (2013). In 
this method, the deviation of pCO2 and Ωa are defined relative to their 
respective annual means: 

δpco2 = pCO2 − pCO2, δΩa = Ωa − Ωa 

where the overbar denotes the annual mean. The sensitivities of pCO2 
and Ωa to a given variable were determined by computing the deviation 
caused by that variable while holding all other variables at their annual 
mean values. The analysis was conducted at the deep-water site F22.

The results show that in the 1-D NeBEM, the seasonal variability of 
the surface pCO2 was primarily controlled by the combined effects of 
temperature and DIC (Fig. 10a). Contributions from salinity, TA, SiO4, 

Fig. 12. Changes of the seasonally averaged pCO2 in MB (a1-a4) and pH in BH (b1-b4). Numbers 1–4: winter, spring, summer, and fall, respectively. Digital values: 
linear regression change rate/year.
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and PO4 were negligible. Among these secondary terms, salinity made 
the largest contribution, but its maximum influence accounted for only 
~17 % of the temperature effect. This finding is consistent with the 
results of Signorini et al. (2013).

The seasonal variability of Ωa, on the other hand, was over
whelmingly driven by changes in DIC (Fig. 10b). All other factors, 
including temperature, salinity, TA, SiO4, and PO4, contributed at least 
one order of magnitude less. δΩa closely followed the seasonal cycle of 
the DIC-driven contribution: negative anomalies during winter, a pro
gressive increase through spring, a decline in fall, and a pronounced 
maximum in summer. This seasonal pattern agrees with the findings of 
Gledhill et al. (2015).

We collected all available historic in-situ pCO2 measurements in MB 
traceable back to 2002. Most of these samples were taken in regions 

deeper than 20 m (Fig. 11). To investigate spatial differences, MB was 
divided into two zones based on water depth: shallow (H ≤ 20 m) and 
deep (H > 20 m). Statistical analysis revealed that pCO2 in MB exhibited 
a long-term linear decreasing trend, opposite to the increasing trend 
observed in the interior Gulf of Maine and over the northeastern shelf 
(Fig. 11a1, b1). When separated into four seasons, pCO2 in MB showed 
significant seasonal variability, with concentrations generally 
decreasing from winter through summer and increasing in fall 
(Fig. 12a1–a4).

Most of the available pH measurements in MB were collected in the 
nearshore BH region shallower than 20 m, with records extending back 
to 1994 (Fig. 11a2). These observations indicate a decreasing trend in 
pH during spring at a rate of –0.006 yr⁻¹ over 1994–2021, despite 
showing an increasing trend in other seasons (Fig. 12b1–b4). The pH 
data in BH showed a clear seasonal coherence with pCO2 in MB: pH 
increased in winter and summer in response to decreases in pCO2 
(Fig. 12a1–b1, a3–b3). However, this coherence was less apparent 
during spring and fall. This result is consistent with the findings from our 
1-D experiments, which indicated that changes in pCO2 in MB and BH 
were driven not only by temperature but also strongly modulated by 
variations in DIC, while changes in DIC were largely determined by the 
balance between net community production and air-sea gas exchanges

As noted earlier, because of insufficient metadata, no post- 
calibration could be applied to pH records prior to the 1990s. If a po
tential measurement uncertainty of ±0.2 is considered, the decreasing 
trend in pH reported for the Gulf of Maine (Fig. 11b2) should be inter
preted with caution.

4.4. Evaluating TA-based algorithms for simulating pCO2 and pH

We evaluated the importance of accounting for both biological and 
physical contributions in calculating pH and pCO2 by comparing three 
different methods of estimating TA: diagnostic, prognostic, and semi- 
diagnostic algorithms. The seasonal variations of simulated pCO₂ and 
pH were compared with observations (Fig. 13), and the statistical biases 
of each method were summarized using Taylor diagrams (Fig. 14). 
Among the three methods, the semi-diagnostic approach best repro
duced the observed seasonal pattern of pCO2 and yielded the smallest 
RMSE, highlighting the necessity of including both biological and 
physical effects in TA calculations. This finding is consistent with the 
recommendation of Bellerby et al. (2005).

In contrast, the diagnostic and prognostic methods essentially 
represent a salinity-dominant system. Their performance therefore de
pends strongly on the accuracy of salinity simulation in the underlying 
physical model. In our case, these two methods failed to capture the 
observed seasonal cycle of surface pCO2 at the deep-water site F22, even 
though they produced reasonable pH simulation (Fig. 13). The semi- 
diagnostic method successfully reproduced the observed seasonal 

Fig. 13. Comparisons of simulated daily mean pCO2 and pH values calculated 
using diagnostic (Diag), prognostic (Prog), and semi-diagnostic (Semi-diag) 
algorithms in NeBEM at F22. Each case is defined by the line legends.

Fig. 14. Taylor diagrams summarizing the statistics of the model performance in simulating the surface pCO2and pH at F22 for the Diag, Prog, and Semi-diag cases. 
Blue dot: observed. Rd dots: simulated. Black lines: standard deviation. Green dashed lines: the root-mean-square error. Blue lines: the correlation coefficient.
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progression of surface pCO2: a sharp decrease beginning in February, a 
minimum in April, a gradual increase from May through October, and a 
maximum in November. By comparison, the diagnostic and prognostic 
methods simulated a minimum in March followed by a decreasing trend 

from June through September, inconsistent with the observations.
The Taylor diagrams further quantified the performance of the three 

methods (Fig. 14). For pCO2, the semi-diagnostic algorithm clearly 
outperformed the others, achieving the highest correlation coefficient 
(0.80), the lowest RMSE (26.7 μatm), and a standard deviation (42.0 
μatm) closest to the observed value (41.5 μatm). In contrast, the diag
nostic and prognostic methods produced correlation coefficients below 
0.1 and RMSE values approaching 50.0 μatm. Their simulated standard 
deviations (30.8 and 31.0 μatm, respectively) deviated by ~10 μatm 
from the observations. For pH, all three methods performed similarly, 
with differences of <0.1 in correlation coefficient, RMSE, and standard 
deviation.

4.5. Evaluation of empirical fitting methods versus NeBEM for pCO2 and 
pH

The BGC+ and BGC+* models were introduced by McCarry et al. 
(2021) as data-fitting approaches to estimate pCO2 and pH. These 
methods first apply multiple linear regression (MLR) to TA and DIC and 
then use CO2SYS to calculate carbonate system variables. A second 
empirical approach, the temperature–salinity (T/S) fitting method, has 
also been applied extensively to reconstruct carbonate system variables 
when direct biogeochemical measurements are lacking. At the global 
scale, T/S fitting has been used to develop ocean carbon climatology and 
databases such as GLODAP and SOCAT (Lee et al., 2006, 2010; Taka
hashi et al., 2009, 2020). Regionally, it has been applied in the North 
Atlantic (Friis et al., 2003) and along the U.S. East Coast (Cai and Wang, 
1998) to provide first-order estimates of TA and DIC. Its popularity 
stems from simplicity and minimal data requirements, making it effec
tive in open-ocean environments dominated by mixing. However, ac
curacy declines in coastal and estuarine systems, where 
non-conservative processes strongly influence carbonate chemistry.

Importantly, the T/S fitting method has been implemented with 
different polynomial orders depending on study region and objectives. 
Most large-scale applications have relied on first-order linear regressions 
with salinity (and occasionally temperature) as predictors, which 
perform well in open-ocean settings dominated by conservative mixing. 
Second-order polynomials have been applied in marginal seas to capture 
curvature in TA–S or DIC–S relationships (Friis et al., 2003). In estuaries 
and coastal waters, where non-conservative processes dominate, third- 
and fourth-order fits have been employed to resolve nonlinear vari
ability (e.g., Cai et al., 2010; Loukos et al., 2000). Although higher-order 
formulations can reduce statistical residuals, they often reduce trans
ferability across regions and risk introducing artificial variability.

To assess whether such approaches can provide the same level of 

Fig. 15. Scatter plots of estimated versus observed TA (a) and DIC (b) concentrations. Blue dots: BGC+ model (McGarry et al., 2021). Digital values: the correlation 
coefficient and root mean square error (RMSE).

Fig. 16. Comparisons of simulated and observed daily mean pCO2 and pH 
values averaged over 1995–2016 at F22 for the cases using the BGC+ and 
BGC+* models. The NeBEM results are also included and named “NeBEM.” 
Gray shadow: the NeBEM-produced standard deviation. Red bars: the observed 
standard deviations. Green and purple bars: the standard deviations produced 
by the BGC+, and BGC+* models.

L. Wang et al.                                                                                                                                                                                                                                   Ecological Modelling 513 (2026) 111459 

14 



information as a biogeochemical model in MB/HB, we compared BGC+, 
BGC+*, and T/S fitting methods with the 1-D NeBEM using 2017 ob
servations at four offshore stations around F22. For the T/S fitting 
methods, our focus was on the influence of polynomial order on car
bonate system estimations. 

BGCþ and BGCþ* methods. The BGC+ model produced observed 
TA and DIC reasonably well, as shown in scatter plots (Fig. 15). The 
fraction of explained variance (R2) was 0.93 for TA and 0.71 for DIC, 
while RMSE was 26.2 μmol/kg for TA and 53.7 μmol/kg for DIC. 
Despite the acceptable statistical fit, DIC prediction carried sub
stantial uncertainty, with biases up to ~150 μmol/kg.

When the fitted TA and DIC were used in CO2SYS, the predicted 
pCO2 and pH failed to capture observed seasonal variability of surface 
pCO2 (Fig. 16). Both observations and NeBEM showed a sharp decline in 
pCO2 from mid-February to May, followed by a gradual increase from 
summer though fall, but the BGC+ model produced nearly constant 
values over this period. This failure was primarily due to uneven sam
pling: most measurements occurred in summer and fall, with sparse 
coverage in winter and spring, leaving the regression poorly 
constrained.

For pH, the BGC+ model performed similarly with NeBEM at the 

bottom but failed to capture seasonal variability at the surface, though 
mean values were closer to observations than NeBEM (Fig. 16b, c). 
Comparisons of BGC+ and BGC*+ showed no meaningful differences, as 
both yielded nearly identical results. 

T/S fitting methods. Using the T/S data collected at four stations 
around F22 in MB, we evaluated first- through fourth-order T/S fits 
for DIC. Results of coefficient significance tests are summarized in 
Table 3, with observed versus predicted DIC shown in Fig. 17 and 
implications for pCO2 and pH presented in Fig. 18.

Statistical testing indicated that a first-order linear regression was 
sufficient. The AIC did not improve with the inclusion of second-order 
terms, and the increase in AIC for third- and fourth-order regressions 
was < 5, indicating no justification for higher-order fits. Coefficient tests 
confirmed that in the first-order regression, salinity was the only sig
nificant predictor. In fact, the salinity-only regression slightly out
performed the salinity-temperature regression in terms of RMSE (both 
R2 = 0.8, but RMSE reduced from 46.04 to 45.91 μmol/kg).

Third- and fourth-order regressions showed marginal improvements 
in RMSE and R2 when all terms were included, but these gains lacked 
statistical significance. Moreover, when the only significant coefficients 
were retained, the fourth-order regression degraded substantially (R2 

Table 3 
Significant test results for the coefficient of each predictor under the polynormal function under different order.

AIC T S T2 TS S2 T3 T2S TS2 S3 T4 T3S T2S2 TS3 S4

First 622 x √ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Second 622 x √ x x x ​ ​ ​ ​ ​ ​ ​ ​ ​
Third 635 x √ x x x x √ √ ​ ​ ​ ​ ​ ​
Forth 637 x x √ √ x x x √ √ √ x x √ x

Note. √ refers positive to the significant test. Shade means the predictor is unavailable under the current polynormal function. x refers insignificant parameters.

Fig. 17. Scatter plots of T/S-fitting method estimated versus observed and DIC concentrations. Red dots: regression with all predictors. Blue dots: regression with 
only significant predictors. Digital values: the correlation coefficient and root mean square error (RMSE).
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dropped to 0.38, RMSE increased to 98.6 μmol/kg). Thus, higher-order 
fits were not statistically justified.

When applied to carbonate system calculations, the choice of poly
nomial order strongly influenced outcomes. Using CO2SYS with a fixed 
TA-S relationship, DIC from the first-order regression (salinity-only) 
produced pCO2 and pH estimates consistent with observations 
(Fig. 18a1-c1). Adding temperature or second-order terms yielded no 
improvement (Fig. 18 a2-c2). By contrast, third- and fourth-order re
gressions, although statistically reduced RMSE in DIC, introduced large 
variability and unrealistic seasonal fluctuations in pCO2 and pH, 
particularly in summer-fall (Fig. 18 a3-c3, a4-c3). This instability per
sisted even when only significant terms were included. These results 
emphasize that higher-order T/S fitting can introduce artificial vari
ability that diverges substantially from observed carbonate system 
dynamics.

Overall, both BGC+ and T/S fitting are purely empirical methods 
that rely heavily on sampling density and distribution, with no mecha
nistic connection to underlying processes. They can reconstruct car
bonate system variables under certain conditions but cannot reproduce 
seasonal cycles based on available 2017 MB dataset or diagnose physical 
and biogeochemical drivers. In contrast, NeBEM not only reproduced 
observed variability but also resolved the mechanisms behind it (e.g., 
spring bloom uptake, air–sea CO2 exchange, nitrification/denitrifica
tion). This process-based capability represents a fundamental advantage 
of mechanistic models over empirical fitting approaches.

5. Summary

Using the 1-D NeBEM in MB/BH, we investigated seasonal and 
interannual variability of ocean acidification (OA) by assessing model 
skill in reproducing observed seasonal cycles of OA-related variables 
(pCO2 and pH), testing sensitivity to parameterizations and algorithms 

for calculating DIC, TA, pCO2, and pH, exploring the biochemical 
mechanism underlying OA condition, and evaluating empirical fitting 
methods comparing to NeBEM.

The model successfully reproduced seasonal and interannual vari
ability of nutrients, DO, Chl-a, pCO2 and pH at the deep offshore site but 
failed at the shallow inner- bay site. Results indicate that OA in the outer 
bay is primarily driven by surface meteorological forcing, whereas in the 
inner bay it is controlled by river discharge-induced advection and 
mixing. These findings highlight the need for 3-D modeling in nearshore 
regions.

At the offshore site, the model skill reached reasonable or better 
levels, with E/VG rankings for T, S, DO, and pCO2 under ARMAE, PB, 
and CF criteria, and an E/VG score for pH under PB. The model further 
suggested that, in outer MB, TA variability, although underestimated 
due to the 1-D limitation, was primarily regulated by nitrification versus 
denitrification and net community production (NCP), while the contri
bution of benthic remineralization was negligible. DIC changes were 
largely modulated by NCP, with air–sea CO2 exchange acting as a 
comparable first-order driver. Spring blooms contributed to seasonal TA 
peaks through NCP.

Among TA algorithms tested, the semi-diagnostic method best 
reproduced observed seasonal pCO2 variability, yielding the highest 
correlation and lowest RMSE, though all methods performed similarly 
for pH. Comparisons with multiple linear regression (BGC+) showed 
that empirical approaches depend heavily on sampling density and 
distribution. Because most observations occurred in summer and fall and 
few in winter–spring, the BGC+ regression was poorly constrained and 
failed to capture the observed seasonal cycle of surface pCO2. The BGC+
and BGC*+ models performed nearly identically.

For T/S fitting, statistical tests confirmed that a first-order salinity- 
based regression was sufficient, with no improvement from higher-order 
polynomials. Third- and fourth-order fits reduced RMSE slightly but 

Fig. 18. Comparisons of simulated and observed daily mean pCO2 and pH values averaged over 1995–2016 at F22 for the cases using the T/S fitting methods. 
Number 1–4: the first to fourth-order regression. Red bars: the historical observed standard deviations. Green dots: observations at four stations in 2017. Blue and 
purple bars: the standard deviations produced by the regressions with all or only significant predictors.
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introduced unrealistic variability in pCO2 and pH, underscoring the risk 
of artificial fluctuations when polynomial order is increased.

Overall, the 1-D NeBEM provided valuable insights into local phys
ical and biogeochemical drivers of OA in MB/HB and effectively 
resolved seasonal and interannual cycles of key variables. However, in 
nearshore areas, acidification is governed by complex 3-D processes 
linked to multiple river discharges, advection, and mixing. Thus, while 
1-D modeling provides a useful framework for mechanism testing and 
parameter evaluation, resolving bay-scale OA requires full 3-D simula
tions. Additionally, this simplified modeling approach can be applied to 
other coastal regions where vertical processes dominate and can serve as 
a preliminary diagnostic tool prior to full 3-D implementation. While 
NeBEM more accurately captures carbonate system dynamics, empirical 
relationships remain useful tools for initial assessment in regions lacking 
sufficient observations or biogeochemical parameterization.
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Appendix A. Polynomial T/S-fitting methods for Estimating DIC

The temperature–salinity (T/S) fitting method is a widely used empirical approach for estimating total alkalinity (TA) and dissolved inorganic 
carbon (DIC) when direct measurements are unavailable. This method has been applied with polynomial formulations of varying order, depending on 
study objectives and regional settings. In this study, we evaluated first-through fourth-order T/S fits for DIC using 2017 observational data collected at 
four stations around F22 in MB and assessed their performance. Further comparisons were also made for pCO2 and pH estimated with CO2SYS using 
the fitted DIC.

The polynomial formulations follow the approach of Loukos et al. (2000) and the least-square regression functions derived from the data are given 
as: 

• First-order: 

DIC = 1968.57 + 3.73T∗ + 61.67S∗ (A.1) 

• Second-order: 

DIC = 1969.10 + 4.78T∗ + 63.21S∗ − 1.39T∗2
+ 2.03T∗S∗ + 1.53S∗2 (A.2) 

• Third-order: 

DIC = 1975.45 + 5.22T∗ + 33.79S∗ − 12.26T∗2
− 1.20T∗S∗ + 6.40S∗2

+ 5.17T∗3
+ 35.36T∗2S∗ + 23.12T∗S∗2

+ 9.27S∗3 (A.3) 

• Fourth-order: 

DIC = 2000.68 + 26.26T∗ + 4.63S∗ − 76.96T∗2
− 75.90T∗S∗ − 20.92S∗2

− 20.86T∗3
+ 27.37T∗2S∗ + 51.83T∗S∗2

+ 36.86S∗3
+ 26.82T∗4

+ 28.12T∗3S + 45.50T∗2S∗2
+ 57.94T∗S∗3

+ 13.49S∗4 (A.4) 

Here, T* and S* are normalized temperature and salinity defined as: 

T∗ =
T − T

σT
, S∗ =

S − S
σS

(A.5) 

where T and S are the mean temperature and salinity, and σT and σS are their standard deviations (Quinn and Keough, 2002). For MB, T = 10.74░◦C 
and S = 31 PSU, with σT = 3.8◦C and σS = 0.93 PSU.
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The statistical significance of polynomial coefficients at the 95 % confidence level was tested using Student’s t-distribution (Chen et al. 1995): 
⃒
⃒
⃒
⃒

ai

σ
̅̅̅̅̅
Cii

√

⃒
⃒
⃒
⃒ > t0.05(N − r) (A.6) 

where ai is the ith regression coefficient, r is the polynomial degree, σ is the RMSE of predicted vs observed DIC, C is the inverse covariance matrix of 
the predicters, N is the number of DIC records, and N − r is the degrees of freedom.

The necessity of higher-order terms is further evaluated using the Akaike Information Criterion (AIC; Burnham and Anderson, 2004). For the least 
squares fits with normally distributed errors, AIC is expressed as: 

AIC = Nlog
(
σ2)+ 2K (A.7) 

where K is the total number of significant predictors, including intercept and bias terms. A higher-order regression is adopted only if AIC decreases by 
more than five relatives to the lower-order fit.

Table A1 
The parameters selected for 1-D NeBEM experiments.

Parameter Unit Value

Fraction of carbon dioxide in the air μatm 350
Absorption of silt* ​ 0.07
Absorption coefficient of clear water 1/m 0.036
Backscatter coefficient of clear water 1/m 0.0016
Photosynthetically active fraction of shortwave radiation* / 0.0473
Sinking velocity for small-size pom m/d 1.0
Sinking velocity for medium-size pom m/d 5.0
Sinking velocity for large-size pom m/d 10.0
Nitrate fraction of demineralized nitrogen for benthic organic matter / 0.9
Remineralization rate for benthic dissolved organic matter 1/d 0.0001
Remineralization rate for benthic particulate organic matter 1/d 0.0025
Remineralization rate for benthic refractory matter 1/d 0.001
Critical shear velocity for resuspension m/s 0.02
Specific nitrification rate 1/d 0.5
Q_10 temperature coefficient for bacteria, phytoplankton, and zooplankton / 2.0
Bacteria maximum specific uptake at the reference temperature 1/d 2.2
Bacteria Specific mortality at the reference temperature 1/d 0.05
Bacteria Michaelis-Menten constant for oxygen limitation / 0.31
Bacteria Michaelis-Menten constant for nitrate limitation mmol N/m3 0.5
Bacteria Michaelis-Menten constant for phosphate limitation mmol P/m3 0.1
Bacteria Specific rest respiration at reference temperature 1/d 0.1
Oxygen consumed per carbon respired for bacteria, phytoplankton, and zooplankton mmol O2/mg C 0.1
Diatom maximum specific productivity at reference temperature* 1/d 1.375
Nanophytoplankton maximum specific productivity at reference temperature 1/d 1.625
Picophytoplankton maximum specific productivity at reference temperature 1/d 2.0
Microphytoplankton maximum specific productivity at reference temperature 1/d 1.1125
Diatom and nanophytoplankton specific rest respiration at reference temperature 1/d 0.04
Picophytoplankton specific rest respiration at reference temperature 1/d 0.045
Microphytoplankton specific rest respiration at reference temperature 1/d 0.035
Diatom and microphytoplankton minimum nitrogen to carbon ratio mmol N/mg C 0.0042
Nanophytoplankton minimum nitrogen to carbon ratio mmol N/mg C 0.005
Picophytoplankton minimum nitrogen to carbon ratio mmol N/mg C 0.006
Diatom and microphytoplankton minimum phosphorus to carbon ratio mmol P/mg C 0.0001
Nanophytoplankton minimum phosphorus to carbon ratio mmol P/mg C 0.000225
Picophytoplankton minimum phosphorus to carbon ratio mmol P/mg C 0.00035
Diatom and nanophytoplankton maximum nitrogen to carbon ratio mmol N/mg C 1.075
Picophytoplankton maximum nitrogen to carbon ratio mmol N/mg C 1.05
Microphytoplankton maximum nitrogen to carbon ratio mmol N/mg C 1.1
Diatom and nanophytoplankton maximum phosphorus to carbon ratio mmol P/mg C 2.0
Picophytoplankton maximum phosphorus to carbon ratio mmol P/mg C 1.5
Microphytoplankton maximum phosphorus to carbon ratio mmol P/mg C 2.7
Diatom nitrate affinity m3/mg C/d 0.0025
Nanophytoplankton nitrate affinity m3/mg C/d 0.004
Picophytoplankton nitrate affinity m3/mg C/d 0.006
Microphytoplankton nitrate affinity m3/mg C/d 0.002
Diatom ammonium affinity m3/mg C/d 0.0025
Nanophytoplankton ammonium affinity m3/mg C/d 0.004
Picophytoplankton ammonium affinity m3/mg C/d 0.007
Microphytoplankton ammonium affinity m3/mg C/d 0.002
Diatom phosphate affinity m3/mg C/d 0.003
Nanophytoplankton phosphate affinity m3/mg C/d 0.004
Picophytoplankton phosphate affinity m3/mg C/d 0.006
Microphytoplankton phosphate affinity m3/mg C/d 0.002
Diatom maximum effective chlorophyll to carbon photosynthesis ratio* mg Chl/mg C 0.06
Nanophytoplankton maximum effective chlorophyll to carbon photosynthesis ratio mg Chl/mg C 0.025
Picophytoplankton maximum effective chlorophyll to carbon photosynthesis ratio mg Chl/mg C 0.015

(continued on next page)
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Table A1 (continued )

Parameter Unit Value

Microphytoplankton maximum effective chlorophyll to carbon photosynthesis ratio mg Chl/mg C 0.045
Diatom 1.1 of minimal specific lysis rate* 1/d 0.05
Nanophytoplankton 1.1 of minimal specific lysis rate 1/d 0.05
Picophytoplankton 1.1 of minimal specific lysis rate 1/d 0.055
Microphytoplankton 1.1 of minimal specific lysis rate 1/d 0.045
Diatom and microphytoplankton maximum nutrient-limitation-induced sinking velocity m/d 5.0
Nanophytoplankton and picophytoplankton maximum nutrient-limitation-induced sinking velocity m/d 0.0
Oxygen produced per unit of carbon fixed for phytoplankton mmol O2/mg C 0.11
Excreted fraction of primary production for phytoplankton / 0.2
Respired fraction of primary production for phytoplankton / 0.2
Threshold for phosphorus limitation for phytoplankton / 1.0
Threshold for nitrogen limitation for phytoplankton / 1.0
Michaelis-Menten constant for silicate limitation for diatom mmol/m3 0.2
Mesozooplankton maximum specific uptake at reference temperature 1/d 1.0
Microzooplankton maximum specific uptake at reference temperature* 1/d 2.0
Nanoflagellates maximum specific uptake at reference temperature 1/d 1.5
Mesozooplankton Michaelis-Menten constant for food uptake mg C/m3 36
Microzooplankton Michaelis-Menten constant for food uptake* mg C/m3 32
Nanoflagellates Michaelis-Menten constant for food uptake mg C/m3 28
Mesozooplankton assimilation efficiency / 0.6
Microzooplankton assimilation efficiency* / 0.5
Nanoflagellates assimilation efficiency / 0.4
Mesozooplankton specific rest respiration at reference temperature 1/d 0.5
Microzooplankton specific rest respiration at reference temperature 1/d 0.02
Nanoflagellates specific rest respiration at reference temperature 1/d 0.025
Mesozooplankton maximum mortality due to oxygen limitation 1/d 0.2
Microzooplankton maximum mortality due to oxygen limitation 1/d 0.25
Nanoflagellates maximum mortality due to oxygen limitation 1/d 0.3
Mesozooplankton phosphorus to carbon ratio mmol P/mg C 0.000786
Microzooplankton phosphorus to carbon ratio mmol P/mg C 0.01
Nanoflagellates phosphorus to carbon ratio mmol P/mg C 0.001
Mesozooplankton nitrogen to carbon ratio mmol N/mg C 0.0126
Microzooplankton nitrogen to carbon ratio mmol N/mg C 0.0167
Nanoflagellates nitrogen to carbon ratio mmol N/mg C 0.0167
Michaelis-Menten constant to perceive food for zooplankton mg C/m3 12
Fraction of unassimilated prey that is excreted for zooplankton / 0.5
Dissolved fraction of excreted/dying matter for zooplankton / 0.5
Basal mortality for zooplankton 1/d 0.05
Power of the calcification law / 0.81
Power of the dissolution law / 2.22
Maximum rain ratio from PISCES / 0.6
Maximum specific dissolution rate 1/d 0.03
Remineralization rate for benthic calcite* 1/d 0.05

Note. Superscript * indicates the sensitive parameters listed in Table A-2.

Table A2 
Sensitive Parameters Index.

Parameter Sensitivity index

Remineralization rate for benthic calcite 21.27
Photosynthetically active fraction of shortwave radiation 7.77
Absorption of silt 1.02
Diatoms maximum effective chlorophyll-to-carbon photosynthesis ratio 0.92
Microzooplankton maximum specific uptake at a reference temperature 0.77
Microzooplankton assimilation efficiency 0.70
Diatoms 1.1 of minimal specific lysis rate 0.66
Diatoms maximum specific productivity at a reference temperature 0.56
Microzooplankton Michaelis-Menten constant for food uptake 0.53

Appendix B. Sensitivity of Biogeochemical Parameters in NeBEM

Unlike hydrodynamic models, which are primarily constrained by physical laws, biogeochemical models encompass a very large number of pa
rameters describing complex biological and chemical processes. For example, the ERSEM module embedded within NeBEM includes >100 parameters 
(Table A-1). These parameters were specified based on literature describing lower-trophic food web dynamics in MB/HB, together with long-term 
monitoring and modeling studies.

Since 1994, the unstructured-grid Row Column Advanced water quality model (UG-RCA) has been applied to MB/HB to assess eutrophication and 
water quality (Xue et al., 2014). Although UG-RCA does not explicitly resolve carbonate chemistry or ocean acidification, the 23-year simulation 
(1994–2016) successfully reproduced seasonal and interannual variability of nutrients, phytoplankton biomass, and dissolved oxygen (Xue et al., 
2014). In addition, simpler lower-trophic ecosystem models, such as NPZ or NPZD formulations (Frank and Chen, 1996, 2001; Tian et al., 2015; Zang 
et al., 2021), have been widely applied to the Gulf of Maine, including MB. These models reliably simulated spring and fall phytoplankton blooms but 
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lacked the chemical formulations required to calculate OA-related variables such as pCO2, pH, Ωa, DIC, and TA. The parameterization of NeBEM was 
therefore guided by insights from these earlier efforts, while extending the formulations to resolve carbonate chemistry.

The 1-D experiments in this study aimed to identify a parameter set capable of reproducing the observed biogeochemical features in MB/HB. 
Because parameters span wide ranges of uncertainty, we conducted a systematic sensitivity analysis starting from the optimal parameter set that 
produced the best simulation of nutrients, Chl-a, DO, pCO2, and pH. Using the approach defined in Eq. (15), we tested the robustness of the model to 
parameter perturbations and quantified sensitivity indices for each tested parameter.

The analysis revealed that ten parameters (listed in Table A-2) were particularly sensitive, with changes leading to significant alterations in model 
solutions. Among these, the fraction of shortwave radiation available for photosynthesis and the benthic calcite remineralization rate exhibited the 
highest sensitivity indices, meaning that small changes in their values strongly influenced simulated OA variables. This finding highlights the 
importance of accurately constraining these parameters in order to enhance model robustness.

More broadly, the sensitivity analysis underscores three scientific and practical implications. The first is model uncertainty: identifying sensitive 
parameters clarifies where model solutions are most vulnerable, allowing uncertainty bounds on OA projections to be better quantified. The second is 
monitoring priorities: sensitive parameters, particularly those linked to light availability and benthic remineralization, should be prioritized for field 
measurements in MB/HB to reduce uncertainties in model calibration. The third is mechanistic insights: the analysis shows which biological and 
chemical processes exert the strongest control over OA dynamics. In NeBEM, light-driven primary production and benthic calcite cycling emerged as 
the most influential, reinforcing their roles in MB’s carbonate system.

Thus, sensitivity analysis provides a crucial bridge between model formulation, field measurement, and OA forecasting. To improve NeBEM’s 
predictive skill for MB/HB, future work should focus on refining these critical parameters through targeted observations and experiments.

Data availability

Data will be made available on request.
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