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Massachusetts Bay (MB)/Boston Harbor (BH) in the northeastern United States has reduced buffering capability,
making it highly vulnerable to ocean acidification (OA). We applied the U.S. Northeast Biogeochemistry and
Ecosystem Model (NeBEM), integrating the unstructured grid, Finite Volume Community Ocean Model with a
modified European Regional Seas Ecosystem Model (ERSEM), to investigate seasonal and interannual OA vari-
ability through one-dimensional (1-D) experiments. Objectives were to (a) evaluate model skill in reproducing
observed seasonal cycles of OA-related variables, particularly pCO5 and pH, in shallow and deep regions, and (b)
assess sensitivity to parameterizations and algorithms for calculating dissolved inorganic carbon (DIC), total
alkalinity (TA), pCOz, and pH. The 1-D NeBEM reproduced variability of nutrients, dissolved oxygen,
chlorophyll-a, pCO», and pH at the deep outer bay site, where air-sea interactions dominate, but failed at the
shallow inner bay site due to the absence of river discharge-driven advection. Of TA algorithms tested, the semi-
diagnostic method best captured observed seasonal pCO» variation, achieving the highest correlation and lowest
root mean square error, although all methods performed similarly for pH. Comparisons with multi-linear
regression methods showed that empirical models are highly sensitive to calibration set. Mechanistic analysis
indicated that TA variability is mainly regulated by nitrification and net community production (NCP), while DIC
variability is driven primarily by NCP. Atmospheric CO:z loading was the first-order contributor to DIC change in
magnitude. However, it has decreased in MB over the past two decades, in contrast to regional and global trends.
Therefore, it is not a major driver of OA progression in this system.

1. Introduction

The increasing atmospheric CO3 loading into the ocean is altering the
marine carbonate system through enhanced CO,-seawater reactions that
produce carbonic acid (H2COs) (Zeebe and Wolf, 2001). This process
releases hydrogen ions (H'1), lowering ocean pH and driving ocean
acidification (OA) (Steinacher et al., 2009; Takahashi et al., 2014). OA is
now evident across the global ocean, particularly in the North Pacific
and North Atlantic (Dore et al., 2009; Santana-Casiano et al., 2007). For
example, at Station LOHA (Long-term Oligotrophic Habitat Assessment)
in the North Pacific subtropic gyre, pH has decreased from 8.13 to 8.03
over the last 30 years (Dore et al., 2009). This acidification reduces

* Corresponding author.

carbonate ion (CO%") availability, making it more difficult for calcifying
organisms such as corals, plankton, and shellfish to build and maintain
shells or skeletons (Tracey et al., 2013).

Massachusetts Bay (MB) and Boston Harbor (BH), located in the
western coastal area of the Gulf of Maine, form a semi-enclosed
embayment with its main outlet bounded by Cape Ann to the north
and Cape Cod to the south (Fig. 1). The region supports productive
shellfish beds, including oysters, scallops, clams, and mussels, which
provide habitat, stabilize sediments, and filter water. These ecosystems
are vulnerable to both the global rise in atmospheric CO3 and local
stressors such as nutrient enrichment and eutrophication. The Massa-
chusetts Special Legislative Commission on OA (MSLC, 2021) reported
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Fig. 1. Locations of outer (F22) and inner (S024) bay sites in Mass Bay (a) and vertical profiles of initial temperature and salinity at F22 (b-c) and S024 (d-e). Red
diamonds: The DIC sampling stations taken in 2017. Purple dots: sewage outfall locations. Blue triangles: rivers located from north to south named the Saugus,

Mystic, Charles, Neponset, North, and Jones Rivers.

that these combined pressures heighten shellfish vulnerability, leading
to reduced shell formation and increased mortality, especially at larval
stages. Recommended mitigation and adaptation strategies include
enhanced monitoring, wetland restoration, and nutrient reduction
through updated regulations and community-based programs.

The severity of OA can be assessed using a combination of carbonate
system metrics, including seawater pCO» from air-sea gas exchanges and
net respiration (Signorini et al., 2013), the aragonite saturation state (Q,)
as an indicator of calcification potential (Morse et al., 2007); and buffer
capacity — often expressed as the total alkalinity (TA) to dissolved
inorganic carbon (DIC) ratio, which reflects the ability of seawater to
resist pH change when CO; is added or removed. In MB/BH, buffer ca-
pacity is shaped by the interplay of carbonate chemistry with local
biogeochemical and physical processes, including TA supply from
weathering, groundwater, denitrification, and carbonate dissolution,
and TA removal via nitrification, calcification, and dilution. These
processes are further modulated by biological production, mixing, and
air-sea COs fluxes (Wang et al., 2013).

Biogeochemical variables such as pH, pCOs, Qa, TA, and DIC are
critical inorganic carbon parameters that can be determined using
empirical tools like CO2SYS (Carbon Dioxide System, Lewis et al., 1998)
or polynomial/multi-linear regression functions (McGarry et al., 2021),
or simulated with coupled physical-biogeochemistry models. The latter
are particularly valuable for capturing spatial and temporal interactions
between circulation and ecosystem processes. Structured-grid examples
include the Potomac Eutrophication Model (PEM; HydroQual, 1991) for
Chesapeake Bay; CE-QUAL-W2, a 2-D hydrodynamic-water quality
model used in estuaries and lakes (Sullivan et al., 2013); the Water
Quality Analysis Simulation Program (WASP), adapted and simplified
from PEM for water quality studies (Nikolaidis et al., 2006); and the Gulf
of St. Lawrence Biogeochemical Model (GSBM; Lavoie et al., 2021).
Unstructured-grid applications include FVCOM-ICM, the 3-D version of
the CE-QUAL-ICM water quality model originally developed by Cerco
and Cole (1994), upgraded to an unstructured-grid framework by the
FVCOM development team at the University of
Massachusetts-Dartmouth, and later enhanced for the Salish Sea
(Khangaonkar et al., 2012); and the European Regional Seas Ecosystem
Model (ERSEM; Butenschon et al.,, 2016), which simulates
lower-trophic-level food webs, carbonate chemistry, and calcification,
and can be coupled to FVCOM through its generalized ecosystem mod-
ule. Unlike data-based empirical methods, these modeling approaches
explicitly resolve coupled physical-biogeochemical processes such as
mixing, advection, and nutrient—carbon interactions (Butenschon et al.,

2016; Wang, 2023).

We established the Northeast Biogeochemistry and Ecosystem Model
(NeBEM) by coupling FVCOM with a regionally adapted ERSEM. The
goal was to investigate complex OA processes in the northeastern U.S.
coastal ocean and to build a predictive tool for stakeholders. While
configuring NeBEM for MB/BH, several key questions emerged. First, is
a three-dimensional model necessary to understand OA variability in
coastal waters? If atmospheric CO5 loading is the dominant driver, air-
sea gas exchange might be represented as a one-dimensional process
instead. Second, like other biogeochemical or ecosystem models, ERSEM
contains numerous parameters that are highly region-specific. In
contrast to hydrodynamic models, where parameter sets are often
transferable, the biological, chemical, and ecological processes in the U.
S. Northeast differ substantially from those in the European seas for
which ERSEM was originally tuned. Adapting ERSEM to NeBEM there-
fore requires parameter reconfiguration based on regional literature and
extensive observational datasets. This raised the question of whether the
adjusted model could reliably reproduce the seasonal and interannual
variability of key OA variables in MB/BH. Third, ERSEM offers multiple
approaches; diagnostic, prognostic, and semi-diagnostic, for calculating
TA. In addition, various empirical methods estimate pH and pCO, from
temperature, salinity, dissolved oxygen (DO), and nitrate using multi-
linear regression equations. Identifying the most suitable approaches
for MB/BH is essential for improving model accuracy and applicability.

To address these questions, we conducted 1-D simulations for
1995-2016 at representative deep and shallow sites in MB/HB. This
paper focuses on exploring the driving mechanisms of OA in outer and
inner bay regions by simulating seasonal and interannual variability of
key acidification-related biogeochemical variables. The goals include
optimizing a set of biological parameters, assessing model sensitivity to
parameterization, and comparing empirical methods with NeBEM in
determining pH and pCOa.

The remainder of this paper is organized as follows. Section 2 de-
scribes the model configuration, experimental designs, observational
datasets used for model validation, and methods applied to estimate pH,
DIC, Qa, and TA. Section 3 presents the model-data comparisons for
NeBEM simulations over 1995-2016. Section 4 compares diagnostic,
semi-diagnostic, and prognostic methods in ERSEM for calculating pH
and pCOy, followed by estimates of the contributions of critical pro-
cesses to TA and DIC. This section also includes a sensitivity analysis for
pCO2 and Qa, and comparisons of CO2SYS and regression methods with
both observations and NeBEM results. Section 5 summarizes the major
outcomes.
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Fig. 2. Schematic of 1-D NeBEM, a coupled physical-biogeochemical modeling system combining FVCOM (physics) and ERSEM (biogeochemistry). The left panel is
the 1-D grid structure. Cy, is a general symbol representing scalar variables such as temperature, salinity and nutrients. e is the node of the triangles where scalar
variable is calculated and < is the centroid of a triangle where the horizontal velocity is calculated. The right panel is the simplified NeBEM structure.

2. The NeBEM, experimental designs, observational data, and
methods

2.1. The NeBEM

The NeBEM was established by coupling the regional FVCOM in the
Northeast Coastal Ocean Forecast System (NECOFS; Chen et al., 2025)
with a regionally adapted version of the European Regional Seas
Ecosystem Model (ERSEM; Butenschon et al., 2016). The 1-D model used
in this study is a simplified derivative of the fully 3-D unstructured-grid
NECOFS framework. For this application, we configured the model with
a control volume composed of six equilateral triangular cells in the
horizontal direction and assumed zero horizontal gradients. This design
preserves the essential structure of the 3-D model while allowing us to
focus strictly on vertical processes. It also provides a straightforward
pathway for scaling the experiment back up to a full 3-D configuration
once key 1-D dynamics are better understood (Fig. 2). In the current
study, the 1-D model is driven exclusively by atmospheric for-
cing—surface solar radiation, 10-m wind, and freshwater-salinewater
fluxes expressed as precipitation minus evaporation (P-E). When P-E
is positive, surface salinity decreases, whereas a negative P-E leads to an
increase in salinity. P-E was not applied arbitrarily, instead, P-E was
adjusted to follow the observed salinity tendencies at each site. No
boundary information from the 3-D model is required. By removing
horizontal advection and exchange processes, this setup enables us to
isolate and examine the vertical biogeochemical responses without the
confounding influence of lateral transport, which will be addressed in
future 3-D simulations.

ERSEM, developed by the Plymouth Marine Laboratory, U.K., rep-
resents the lower-trophic- level food web through autotrophic and het-
erotrophic processes, spanning both microbial and benthic pathways,
carbonate chemistry, and calcification (Butenschon et al., 2016). In the
pelagic system, inorganic state variables comprise major chemical
components of carbon; DIC, pCO3, pH, Qa, and TA, along with nutrients

such as nitrogen, phosphate, silicate, and iron. Organic state variables
consist of four phytoplankton groups, bacteria, three zooplankton
groups, and dissolved and particulate organic matter. The benthic
module maintains the same inorganic variables as the pelagic system,
while the organic pool contains microbes, zoobenthos, and dissolved
and particulate organic matter. Due to the limited observational con-
straints needed to fully parameterize benthic organic matter cycling, we
employed a simplified benthic closure rather than a complete benthic
module. In this configuration, remineralized benthic material is
implicitly returned to the pelagic nutrient and carbon pools, rather than
being explicitly resolved into multiple sediment compartments. This
approach maintains mass balance within the biogeochemical system
while allowing us to focus on water-column carbonate dynamics without
requiring detailed benthic parameterization, which is currently un-
available for MB/BH

In ERSEM, pH, pCO,, and Qa are derived from hydrogen ion con-
centration [H"], carbon CO, concentration, and calcium, and carbonate.
Given TA, DIC, and total boron, these variables are solved using the
HALTAFALL iterative algorithm with an initial [H*] = 10~® mol/kg
(Ingri et al., 1967).

ERSEM offers three algorithms to calculate TA: diagnostic, prog-
nostic, and semi-diagnostic. The diagnostic method estimates TA
directly from either salinity or from salinity plus temperature without
accounting for biogeochemical influences (Borges and Frankignoulle,
1999; Bellerby et al., 2005; Millero, 1998; Lee et al., 2006). In this study,
the diagnostic TA was computed using a linear function of salinity
(Millero, 1998), given by

TAgiq = 520.1 + 51.24S (€9)]
where TAg, is diagnostic TA and S is salinity. The prognostic method

extends the diagnostic approach by adding the effects of biogeochemical
processes, expressed as

TApm = TAdia + TAbio (2)
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Fig. 3. Changes in the daily net heat flux (a), short wave radiation (b), and
wind speed (c) averaged over 1995-2016. Black line: the multi-yearly-averaged
daily mean. Gray shadow: the standard deviation. Red dashed line: the zero
line. Note: the model was driven by hourly forcing.

where TAp;, represents TA changes in TA due to ammonium source
(Fnma), nitrate sinks (Fyo3), phosphate sink (Fpo4), calcification sources
(F.qc), calcite dissolution sinks (Fy;), benthic remineralization source
(Fremin), and nitrification sinks (F,;), combined as

TApio = Fxus — Frnos — Fpos + 2(Feate — Fuiss) + Fremin — Fritri 3

(detailed formulations in Butenschon et al., 2016). The
semi-diagnostic algorithm further incorporates the effects of physical
transports (advection, river input) and turbulent mixing (TA,,) along
with the background TA at the initial state (TApx), giving

TAsemi—dia = TAbck + TAbio + TAphy (4)

DIC is calculated from the combined contributions of air-sea CO; flux
(Fairco2), remineralization(Fp,,,), bacterial respiration(Fs,,), phyto-
plankton respiration and photosynthesis (Fp,, — Fs,,,), zooplankton
respiration (F,,), and calcification minus dissolution (Feure — Fuis),
along with transports and mixing (F,), expressed as

DIC = FaircoZ + Fremin + FB,ESP + <FP,ESP - FPp ) + FZmP + (anlc - Fdiss) + thy

(5)

The mathematical formulations for these terms are detailed in
Butenschon et al. (2016).

ERSEM has been successfully applied to capture the carbonate sys-
tem variability in the southern North Sea (Blackford and Gillbert, 2007)
and the Northwestern European shelf (Artioli et al., 2012). De Mora et al.
(2016) evaluated ERSEM based on emergent properties and ecosystem
functions, reporting that it reproduced key ecosystem behaviors. Ge
et al. (2021a, 2021b) extended the FVCOM-ERSEM coupling to include
cohesive sediment processes and applied it to investigate the influence
of suspended sediments on nutrients and phytoplankton dynamics in the
Changjiang River Estuary.

hyto

2.2. Empirical methods to calculate pH and pCO2

We compared NeBEM with three empirical data-fitting methods for
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estimating pH and pCO». The first two were developed by McGarry et al.
(2021), who applied multiple linear regression (MLR) using biogeo-
chemical predictors to estimate carbonate system parameters. The first,
termed BGC+ model (“BGC” for biogeochemical and “+” indicating
inclusion of all available predictors), uses temperature, salinity, DO, and
nitrate as input variables. The second, the BGC+* model, retains the
same MLR framework but applies adjustments or uses a reduced pre-
dictor set to accommodate specific application or data limitations (the
asterisk denoting a modified or trimmed configuration).

The third method uses CO2SYS v2.0 (van Heuven et al., 2011) to
calculate pH and pCO,. In this approach, TA is computed using the
semi-diagnostic algorithm, while DIC is estimated by fitting observed
temperature and salinity to first-through fourth-order polynomial
regression functions (Loukos et al., 2000; McGarry et al., 2021). Details
of the polynomial fitting and parameterization are provided in Appendix
A.

2.3. Experimental designs

The 1-D NeBEM experiments were conducted at two representative
sites: MWRA monitoring station F22, located on 80-m isobath in the
outer bay, and station 024 (hereafter referred to as S024), situated on
the 12-m isobath in Boston Harbor (Fig. 1). These sites were selected
based on previous observing system simulation experiments (OSSEs) in
MB by Xue et al. (2012) and seasonal water quality mechanism studies
by Xue et al. (2014). Those studies identified F22 as a location with
maximum correlation to bay-wide variability, due to its connection with
two key physical drivers: the upstream Western Maine Coastal Current
and Merrimack River-induced low-salinity coastal plume, both of which
strongly influence circulation and stratification. In contrast, S024 rep-
resents a harbor ecosystem where biogeochemical conditions are shaped
primarily by local freshwater outflows, largely decoupled from outer
bay physical processes.

Simulations covered the period 1995-2016. Initial vertical temper-
ature and salinity profiles were taken from the NECOFS reanalysis (Chen
etal., 2021) for January 1, 1995. At that time, both sites exhibited colder
surface waters and warmer bottom waters, with a surface-bottom tem-
perature difference of ~0.8 °C at F22 and ~0.5 °C at S024 (Fig. 1).
Salinity at S024 was vertically uniform at ~30.8 PSU, while at F22 the
upper 60 m was well-mixed, with salinity increasing toward the bottom
and a surface-bottom difference of 0.3 PSU. Thus, S024 represents
fresher onshore conditions, and F22 salter offshore conditions.

The 1-D model was forced at the surface with wind stress and heat
flux from hourly NECOFS meteorological product, including net heat
flux, shortwave radiation, and 10-m wind speed (Fig. 3). Vertical tur-
bulent mixing in the 1-D NeBEM is resolved using the Mellor-Yamada
level-2.5 (Mellor and Yamada, 1974) turbulence closure scheme
embedded in FVCOM. The configuration follows the same approach
used in the full 3-D FVCOM system. The Mellor-Yamada 2.5 scheme
solves prognostic equations for turbulent kinetic energy and turbulence
length scale, and the resulting fields are used to compute vertical mixing
coefficients for momentum, heat, nutrients, and carbonate-system
tracer. Over the 22-year period, the seasonal cycle of net heat flux was
consistent, with summer variation up to 43 W/m? driven mainly by
shortwave radiation changes, and winter variation up to 177 W/m?
largely due to sensible and latent heat fluxes. Monthly-mean wind
speeds averaged ~8.0 m/s in winter and ~5.0 m/s in summer, with
interannual monthly variations reaching +4.0 m/s. All state biological
and chemical variables were initialized with constant values.

2.4. Data used for model validation and mode skill assessment methods

The 1-D numerical experiments were designed to evaluate the
model’s ability to reproduce observed seasonal cycles of OA-related
variables, especially pCO5 and pH, in both shallow and deep areas of
MB. Model skill was assessed for temperature, salinity, nutrients
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Table 1

Performance categories for CF, PB, and ARMAE.
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Metric Eéf:;l(lie?l; //‘\,Iél;y Good (G) Reasonable (R) Poor/Bad (P/B)
CF <1 1-2 2-3 >3

PB <10 10-20 20-40 > 40
ARMAE <0.2 0.2-0.4 0.4-0.7 > 1.0
Color-code

Note. CF: Cost Function; PB: Percentage of Bias; ARMAE: Adjusted Relative Mean Absolute Error. No reasonable score is defined for PB.

(nitrate, ammonium, phosphate, and silicate), chlorophyll-a (Chl-a),
DO, pCO,, and pH. Simulated variables were first visually compared
with observations at F22 and S024 over 1995-2016. Because both
physical and biochemical variables showed consistent seasonal patterns
during this period, comparisons used 22-year monthly means and
standard deviations for surface and bottom layers. Seasonal variability
of vertical profiles was also examined at F22. Seasons were defined as:
winter (December to February), spring (March to May), summer (June
to August), and fall, (September to November). Model parameters are
listed in Table A-1 (Appendix B), with parameter sensitivity analysis also
provided there.

Direct in-situ pCO2 and pH measurements at F22 were unavailable
for 1995-2016. Instead, we used all surface pCO, data within a 10-km
radius of F22 from Lamont-Doherty Earth Observatory (LDEOv2019,
Takahashi et al., 2020) dataset and compared their averages with
simulated results. For pH, the closest station with long-term measure-
ments was NO4 (9.9 km from F22) with similar stratification. Monthly
pH data from 2006 onward were directly compared to simulated pH at
F22 without spatial corrections. The in-situ pCO, measurement data
have already incorporated long-term anthropogenic carbon trends.

Observations of temperature, salinity, nutrients, DO, Chl-a, and pH
(total scale) at F22 (pH from NO4) and S024 over 1995-2016 were
provided by MWRA. Sampling at F22 was roughly monthly at five
depths, and weekly at surface and bottom for S024. Surface pCO5 for the
U.S. Northeast shelf came from LDEOv2019 dataset provided by NOAA.
Surface pH was derived from the World Ocean Database (WOD18, Boyer
et al., 2018) and MWRA measurements near BH. TA and DIC were
measured monthly in 2017 at four stations surrounding F22 (Fig. 1),
provided by the MIT Sea Grant (personal communication with Carolina
Bastidas at MIT Sea Grant). pH measurements before the 1990s used
varying standards, calibration methods, and electrode technologies.
Lacking sufficient metadata, no post-calibration was attempted. Differ-
ence between pre-1990 pH and modern pH measurements may reach 0.2
units (Anes et al., 2019); thus +0.2 was added to reflect measurement
uncertainty for 1990s data.

Model skill was quantified using the Cost Function (CF; OSPAR et al.,
1998; Gibson et al., 2006), Percentage of Bias (PB; Allen et al., 2007;
Maréchal, 2004), and Adjusted Relative Mean Absolute Error (ARMAE;
Sutherland et al., 2004):

CF :Z‘#O_O' )

PB — % x 100 @
_{M—-o0| - OF)

ARMAE = oy ®

Here, O and M represent the observed and simulated variables, n is
the number of samples, o, is the observed standard deviation, and OE is
observational error. OF values differed by variable: 0.02 °C for tem-
perature (Olsen et al., 2016), 0.02 PSU for salinity (Olsen et al., 2016), 2

% for nutrients and DO (Melrose et al., 2015; Olsen et al., 2016), 0.1
mg/m3 for Chl-a (Olsen et al., 2016), 2.5 patm for pCO; (Takahashi et al.,
2020), and 0.001 for pH. The angular brackets ( ) in ARMAE indicate
averaging, and ARMAE is set to zero if the numerator is negative. Scores
for CF, PB, and ARMAE are categorized into four performance levels:
excellent/very good (E/VG), good (G), reasonable (R), and poor/bad
(P/B), as defined and color-coded in Table 1.

2.5. Methods used to estimate changes in TA and DIC

Following the model’s demonstrated ability to reproduce the sea-
sonal variability of OA-related biogeochemical variables, we quantified
the relative contributions of key biogeochemical processes to changes in
TA and DIC. The vertically averaged rates of change for TA and DIC can
be expressed as:

0TA — = = 5

o Rycp + Rep + Rremin + Ron )
oDIC = = &

T = RN(;p + RCD + RAS + RRemin (10)

Here, R denotes the rate of a specific process, the overbar represents
vertically averaging. Subscripts denote: NCP refers to net community
production, CD to calcification minus dissolution, Remin to remineral-
ization, DN to denitrification via nitrification, and AS to air-sea CO»
exchange. The daily changes in TA and DIC can be written as:

t

ATA (1) = / (Rucp + Rep + Roomin -+ Row)dt

an
t
= AFNCP(t) + AFCD (t) + AFremin (t) Jr AFDN(t)
t
ADIC (1) = /(T{NCP + Rep + Ras + Reyemin)dt a2
t
= AFNCP(t) + AFCD (t) + AFAs(t) Jr AFremin(t)
To assess anomalies relative to the linear trend, we define:
ATA (t) = AF nep(t) + AF cp(t) + AF romin(t) + AF py(£) + ASLTra(t)
13)
ADIC(t) = AF yep(t) + AF cp(t) + AF as(t) + AF yamin(t) + ASLTpic(£)
14)

where the prime (’) indicates the anomaly after removing the linear
trend, and ASLTra(t) and ASLTpic(t) represent the sum of linear trend
values for each term in Egs. (11) and (12), respectively.

2.6. Parameter sensitivity analysis method
A parameter sensitivity analysis was conducted to identify the pa-

rameters most critical to the model’s performance. The approach follows
the standard method widely applied in ecosystem modeling (Frank et al.,
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Fig. 4. Comparisons of simulated and observed surface and bottom tempera-
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1986; Fasham et al., 1990; Chen et al., 1999; Ji et al., 2006).
Each parameter was perturbed individually by 1 % from its baseline
value, and sensitivity index was calculated as:

AF/F
Aaja

(15)

Where F is the model output variable, a is the parameter value, AF is
the change in the variable, and Aa is the change in the parameter. The

model is considered sensitive to a parameter if S > 0.5. A detailed dis-
cussion of parameter values and their sensitivity is provided in Appendix
B.

3. Results

3.1. Seasonal and interannual variations of temperature, salinity
nutrients, DO and Chl-a

Temperatures. The 1-D NeBEM effectively reproduced the observed
seasonal cycles and interannual variability of surface and bottom
temperature and consequently stratification at both the deep
offshore site F22 and the shallow nearshore site S024 (Fig. 4 al-a2,
b1-b2). Water temperatures in MB varied markedly with the sea-
sons. At the surface, values ranged from 2.6 to 4.6 °C in winter, rose
sharply through spring, peaked at 17.9-21.0 °C in summer, and
declined rapidly in fall. Seasonal changes in both shallow and deep
regions generally tracked the surface net heat flux. The water column
was well mixed in winter, while stratification developed in spring
and persisted through fall. It intensified with water depth, weak at
the site S024 and much stronger at the site F22. The maximum
surface-bottom temperature difference reached 2.5 °C at S024 and
~12.2 °C at F22. At S024, surface and bottom temperatures fluctu-
ated in phase, whereas at F22 they followed asynchronous cycles:
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Fig. 5. Comparisons of simulated and observed surface and bottom nitrates and phosphates at F22 (al-a4) and S024 (b1-b4). Black lines: the simulated daily means
averaged over 1995-2016. Red line: observed monthly means averaged over 1995-2016. Gray shadows: the standard deviations relative to the multi-yearly-averaged

daily means. Vertical bars: the observed standard deviations.
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bottom waters warmed gradually from spring to late fall, reaching
their peak in November. These seasonal patterns were stable over
time and unaffected by regional climate-driven warming.

Interannual variability was minimal in winter, when strong mixing
dominated, and more pronounced from spring through fall. At F22, sea
surface variability was larger (~=+1 °C in winter and ~+1.5 °C in spring
through fall over 1995-2016) than at the bottom (~+0.9 'C year-
round). At S024, variability was similar throughout the water column.

Salinities. At the deep site F22, near-surface salinity was primarily
influenced by freshwater discharge from the Merrimack River, with
annual maxima occurring in spring (Fig. 4 a3). While the seasonal
pattern was consistent, its magnitude varied among years, with the
largest interannual fluctuation (~=+1.3 PSU) in spring. Bottom wa-
ters consistently reflected the Gulf of Maine water characteristics,
with salinity near 32.5 PSU (Fig. 4 a4; Chen et al., 1995). Stratifica-
tion isolated these waters from surface variability, producing mini-
mal seasonal change and low interannual variability (~+0.3 PSU),
roughly one-third that of the surface.

At the shallow site S024, near-surface salinity showed stronger sea-
sonal variability (Fig. 4 b3-b4). Values dropped sharply in spring due to
the elevated river runoff, recovered in late spring as runoff decreased
and mixing with interior bay water increased, remained stable during
summer, and declined gradually in fall. The largest interannual vari-
ability (~ +£4.0PSU) occurred in spring. The site also experienced strong
spring stratification, with a maximum surface-bottom salinity difference
of ~3.4 PSU observed in April While bottom salinity exhibited little
seasonal variation, its interannual range was substantial, reaching
(~+£3.4 PSU) in April over 1995-2016.

Nutrients. The NeBEM includes five major nutrients: nitrate (NOs),
ammonium (NHy), phosphate (POy), silicate (SiO4), and iron (Fe, not
included in these experiments). Here, nitrate and phosphate are
presented as representative examples to evaluate model perfor-
mance. The 1-D NeBEM successfully reproduced the seasonal cycles
of nitrate and phosphate at both the surface and bottom at the deep
site F22, but performed poorly at the shallow site S024.

At F22, observed nitrate concentrations were vertically uniform in
winter, differentiated between surface and bottom from spring through
fall, and returned to vertically homogeneity in early winter due to wind-
driven mixing and surface cooling (Fig. 5 al-a2). Near-surface nitrate
declined rapidly in spring because of phytoplankton uptake in the upper
euphotic layer, remained low through summer, and increased gradually
in fall. Near-bottom nitrate changed little in winter but rose steadily
from spring through fall as a result of heterotrophic processes (remi-
neralization, nitrification, benthic flux) and Gulf of Maine water intru-
sion, before decreasing again under wind mixing. Phosphate at this site
followed a similar seasonal pattern (Fig. 5 a3-a4).

At F22, monthly means (1995-2016) showed nitrate concentration
of ~5.0 pM at both surface and bottom in January-February, < 1.0 pM at
the surface, and ~7.0-8.0 pM at the bottom from April to October, and
~4.0 pM at both depths in December. Interannual variability ranged
from +2.0 to +£3.0 pM, larger in winter-spring and smaller in summer.

At S024, nitrate exhibited strong seasonality, decreasing from
January to June, reaching a minimum in July to August, and increasing
from September to December. Surface nitrate averaged over 1995-2016
peaked at ~13.3 pM in winter and fell to ~1.5 pM in summer, with
interannually variability of +1.7-5.5 pM (Fig. 5 bl). Bottom nitrate
followed the same seasonal cycle but with lower extremes (maximum
~9.5 pM, minimum ~1.0 pM) and smaller interannual variability (~
+0.6-3.2 pM, Fig. 5 b2). The marked surface-bottom nitrate differences
indicate that S024 is not vertically well mixed, which stratification
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largely maintained by freshwater inputs from multiple rivers.

In contrast, phosphate difference between surface and bottom at
S024 were much smaller than that for nitrate (Fig. 5 b3-b4). The
monthly mean phosphate averaged over 1995-2016 was ~1.0 pM in
January, decreased gradually from February to April, reached a mini-
mum (~0.4 pM) in April, increased steadily from May to September, and
attained a second maximum (~1.3 pM) in October, remaining elevated
through November-December. The largest interannual variability
occurred in September-October, ranging up to +0.5 pM at the surface
and +1.2 pM at the bottom.

Dissolved oxygen. From 1995 to 2016, DO in MB displayed a pro-
nounced seasonal cycle, peaking in April and reaching a minimum in
November (Fig. 6 al-a2, b1-b2). This pattern was consistent across
years, with interannual variability ranging from £0.3 to £0.9 mg/L.
The magnitude of surface-bottom differences depended on depth,
being smaller at the shallow site S024 and more pronounced at the
deep site F22. The 1-D NeBEM successfully reproduced the observed
DO cycles at both sites, capturing not only the seasonal phasing but
also at the concentration levels.

Chlorophyll-a. The Gulf of Maine ecosystem is characterized by
spring and fall phytoplankton blooms (Tian et al., 2015). Although
global warming has altered bloom timing (Record et al., 2019), the
biannual bloom regimes has persisted over the past 25 years. In MB,
however, spatial and temporal variability complicates the signal.
Averaged over 1995-2016, the typical spring and fall bloom peaks
were not evident in Chl-a concentrations at either F22 or S024
(Fig. 6, a3-a4, b3-b4).

At F22, high interannual variability at the surface in February and
October suggested episodic influence from regional spring and fall
blooms. At S024, surface Chl-a concentrations varied substantially year
to year, with a dominant seasonal mode characterized by variation
pattern by a summer maximum.

The 1-D NeBEM simulated a distinct spring bloom at F22, with 25-
year averaged Chl-a concentrations peaking in March (~ 5.8 pg/L at
the surface, ~ 2.0 pg/L at the bottom). The model also indicated
elevated concentrations in late October - early November, but these
were insufficient to constitute a fall bloom. Overall, simulated concen-
trations were of the same order of magnitude as observations at both
surface and bottom, despite the absence of a clear fall signal.

Taken together, comparisons of simulated and observed tempera-
ture, salinity, nitrate, phosphate, dissolved oxygen, and chlorophyll-a at
F22 and S024 show that the 1-D NeBEM reliably captured the primary
seasonal and interannual variability of lower trophic food web dynamics
at the deep offshore site but performed less effectively nearshore.
Additional comparisons of vertical profiles at F22 further demonstrated
the model’s ability to reproduce the seasonal evolution of stratifications
in temperature, salinity, nutrients, dissolved oxygen, chlorophyll-a, as
well as their interannual variations (Fig. 7). Both observed and simu-
lated profiles indicated a well-mixed winter state followed by spring-to-
fall stratification, although the model tended to underestimate winter
nitrate.

3.2. pH and pCO, comparisons

Observed surface pCO; in MB exhibits a distinct seasonal cycle: high
in winter, declining through spring to a minimum in May, rising again
during summer and fall, and returning to winter values by December
(Fig. 8a). At the deep offshore site F22, the long-term mean (1995-2016)
ranged from ~294 patm in April to ~448 patm in December, with
interannual variability of +30 patm. The 1-D NeBEM reproduces the
seasonal phasing and the magnitude of interannual variability but ex-
hibits an overall low bias of ~40 patm.

Surface pH (2006-2016) is relatively low in February, changes little
from May to October, and reaches a minimum in November (Fig. 8b).
Values range from 7.8 to 8.1 with interannual variability up to ~0.2.
Bottom pH shows a similar seasonal pattern but is ~0.1 lower during
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Fig. 8. Comparisons of simulated and observed pCO, and pH values at F22 (a,
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spring-summer, and its interannual variability is likewise ~0.1 smaller
(Fig. 8c). The 1-D NeBEM matches bottom pH well on multi-year av-
erages yet overestimates surface pH by ~0.2. Taken together, the model
captures the seasonal structure and interannual spread but un-
derestimates absolute pCO5 and overestimates surface pH.

On multi-decadal scales, rising atmospheric CO5 has elevated sur-
face-ocean pCO5 globally. Open-ocean syntheses report increases of
~1.6-1.9 patm yr! (=16-19 patm per decade), with estimates from
other analyses around 1.36 + 0.16 patm yr~! (Takahashi et al., 2009;
Takahashi et al., 2020; Landschiitzer et al., 2016; Denvil-Sommer et al.,
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2019). Over the 21-year span of our record (1995-2016), this implies an
anthropogenic offset on the order of ~30 patm (using ~1.5 patm yr~' for
a conservative central value). Incorporating this secular increase into
model forcing would raise the simulated seasonal baseline of pCO,,
plausibly accounting for a substantial fraction of the ~40 patm low bias
while preserving the correctly simulated seasonal shape and interannual
amplitude. By the same token, including the anthropogenic signal would
modestly depress modeled surface pH on decadal scales, narrowing the
~0.2 high bias relative to observations.

3.3. Quantitative model skill assessment

The statistical skill metrics — cost function (CF), percentage bias
(PB), and accumulated root mean absolute error (ARMAE) — were
computed for key physical, biogeochemical, and chemical variables at
the deep offshore site F22. These variables include temperature (T),
salinity (S), nitrate (NO3), ammonium (NHy4), phosphate (POy), silicate
(SiOy4), DO, Chl-a, pCO,, and pH (Table 2).

Overall, the 1-D NeBEM demonstrated strong skill across most var-
iables. Performance for T, S, DO, and pCO- reached the Excellent/Very
Good (E/VG) category for all three metrics. For pH, PB and ARMAE also
indicated E/VG, while CF placed it in the Good (G) category. Nutrient
simulations were generally robust: NO3, POy, and SiO4 were in the E/VG
range based on CF, Reasonable/Good (R/G) according to ARMAE, and
Good (G) in PB. NH4 showed mixed performance: E/VG in CF, indicating
good overall consistency with observations, but poor in PB, reflecting a
strong systematic bias, and only R in ARMAE, suggesting moderate
relative errors. Among the nutrient variables, NH4 therefore stood out as
the weakest in terms of balanced performance across all metrics. Chl-a
skill levels were comparable to nutrients: E/VG for CF, G for PB, and
R for ARMAE. These results indicate that the 1-D NeBEM is robust in
simulating both lower-trophic ecosystem variables and carbonate sys-
tem variables (pCO2 and pH) at the deep offshore site.

While CF, PB, and ARMAE together provide a robust framework for
evaluating model skill, each metric has distinct strengths and limita-
tions. CF combines accuracy and correlation into a single measure,
making it valuable for summarizing overall model-data consistency,
though it can obscure which specific error dominates. PB quantifies
systematic over- or underestimation in percentage terms, providing a
straightforward measure of bias but ignoring variability and error dis-
tribution. ARMAE emphasizes normalized absolute deviations, making
it sensitive to relative errors at low concentrations; however, this
sensitivity can exaggerate error levels when observations are small. Used
together, these three measures offer a sufficiently comprehensive
assessment of model performance: CF highlights overall agreement, PB
diagnoses systematic bias, and ARMAE evaluates relative deviations.
Although additional indices, e.g., correlation coefficient, root mean
square error (RMSE), could complement this framework in future
studies, the present evaluation is adequate for identifying the main
strengths and weaknesses of the 1-D NeBEM.

Table 2
Statistical measure scores of the model performance at F22.
T S NO, NH, PO, Si0, DO Chl-a pCO, pH
CF 0.35 0.54 0.59 0.57 0.57 0.70 0.49 0.61 0.92 1.34
PB 7.58 0.56 -34.89 -47.38 -18.30 -31.08 -1.62 -33.17 -9.56 | 2.09
ARMAE 0.19 0.01 0.43 0.66 0.26 0.43 0.03 0.66 0.11 0.02

Note. T: temperature, S: salinity, NOs: nitrate, NH4: ammonium, PO4: phosphate, SiO4: silicate, DO: dissolved oxygen, and Chl-a: chlorophyll-a. Blue: excellent & very

good. Green: good. Yellow: reasonable. Brown: poor & bad.
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4. Discussions
4.1. Limitations of 1-D NeBEM in shallow vs deep environments
The comparison between the observations and NeBEM results high-

lights that the 1-D NeBEM performed very differently at the deep
offshore site (F22) and the shallow estuarine site (S024). These

10

differences arise from both physical and biogeochemical conditions.
Physically, model performance for temperature was consistently better
at F22 than at S024 (Fig. 4al-a2 and b1-b2). At the shallow site, the
model overestimated summer temperatures throughout the water col-
umn. This bias likely reflects the absence of sediment heat flux in the 1-D
NeBEM, which can be significant in estuaries. Kim and Cho (2011)
demonstrated that heat uptake by sediments can strong affect the
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thermal budget, and they incorporated a sediment heat flux module into
FVCOM to account for this effect. In our simulation, the flux term was
not activated because no observed sediment temperature data were
available for BH.

Simulating salinity is particularly challenging in the 1-D NeBEM,
especially at S024, where multiple river discharges dominate variability.
In this configuration, freshwater-salinewater was introduced only as
surface precipitation and evaporation, thereby neglecting horizontal
advection and riverine plume dynamics. This simplification allowed
reasonable reproduction of surface and bottom salinity at F22, but the
model failed to simulate either the seasonal or the interannual vari-
ability at S024, particularly during the spring when river runoff peaks
(Fig. 4b3-b4).

Errors in biogeochemical variables were more substantial at S024.
While the model captured the primary physical cycles to some extent, it
failed to reproduce nutrient cycles and phytoplankton blooms at S024
(Figs. 5-6). This indicates that nutrient variability at the shallow site is
largely governed by nearshore physical processes linked to multi-river
runoff. Without advective nutrient supply, the heterotrophic processes
embedded in the model could not sustain realistic seasonal nutrient
cycles. Consequently, simulated Chl-a concentrations at S024 diverged
markedly from observations. Even at F22, simulated interannual
nutrient variability was smaller than observed (Fig. 5), suggesting that
3-D advection, particularly GoM intrusions, plays an essential role in
shaping nutrient distributions in the outer bay (Xue et al., 2014).
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For DO, however, the model performed better. As noted by Xue et al.
(2014), DO variability in MB is primarily controlled by air-sea exchange
rather than horizontal transport. This is consistent with our results: the
1-D NeBEM reproduced seasonal DO cycles at both the surface and
bottom at S024, even though it could not resolve the observed stratifi-
cation and nutrient dynamics.

4.2. Processes attributed to TA and DIC

The 1-D NeBEM results indicated that monthly mean surface DIC
concentrations, averaged over 1995-2016, varied within a relatively
narrow annual range of about 120 pmol/kg. The seasonal cycle was
characterized by a gradual decrease from February to July, followed by
an increase from September to December, with maximum concentra-
tions occurring in January and minimum concentrations in August. In
comparison, monthly mean surface TA exhibited only very small vari-
ability, with fluctuations of just a few pmol/kg. The seasonal pattern of
TA was marked by a slight increase from January to April, and a gradual
decline from October to December, with relatively stable conditions
during the summer months.

In the 1-D NeBEM framework, TA was estimated using a semi-
diagnostic algorithm that incorporating both biological and phys-
ical processes. The biological contribution is the net result of several
terms: net nutrient uptake minus the sinks of oxidized nitrogen and
phosphate, calcification minus dissolution, remineralization, and nitri-
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fication. The physical contribution is primarily regulated by vertical
mixing. DIC dynamics in the model are more complex, as they are
influenced by multiple interacting processes. Sources include bacteria,
phytoplankton, and zooplankton respiration, sinking organic matter
from phytoplankton photosynthesis, benthic remineralization, calcifi-
cation, dissolution of calcite, and vertical mixing. DIC is also strongly
affected by the air-sea CO; flux, which can act as either a source or sink
depending on the direction of exchange. The relative contributions of
these processes to TA and DIC were quantified at the offshore deep-
water site F22 based on Egs. (4) and (5), with results summarized in
Fig. 9.

Changes in TA were dominated by the balance between new com-
munity production and nitrification. Calcification and dissolution were
approximately balanced under the prevailing saturation conditions,
while remineralization played a negligible role (Fig. 9al). Positive

changes in AF/Ncp(t) reflected an autotrophic ecosystem with a net
organic matter production. Nitrification is an aerobic process that con-
sumes oxygen and decreases TA by producing hydrogen ions. In
contrast, denitrification is an anaerobic process that occurs under low-
oxygen conditions and increases TA by removing hydrogen ions with
nitrate reduced to nitrite. Model results suggest that nitrification
generally outweighed denitrification, producing net negative changes in
AF pn(t). Both AF nep(t) and AF/DN(t) peaked during the spring bloom
period (Fig. 9a2), but with opposite effects on TA. Their combined dif-
ference yielded the largest seasonal variability in TA, with maxima in
spring. Even though the amplitude of TA variability was underestimated
due to the limitations of the 1-D framework, the simulation showed that
TA changes were primarily controlled by NCP, counteracted by
nitrification.

Changes in DIC were largely determined by the balance between net
community production and air-sea gas exchanges, while calcification,
dissolution, and remineralization contributed negligibly (Fig. 9b1). In
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Eq. (5), the contribution of AF ycp(t) was consistently negative, acting as
a sink that reduced DIC due to phytoplankton photosynthesis. Air-sea
exchange (AF 45(t)) exhibited a seasonal pattern in which the ocean
absorbed atmospheric CO; during spring and summer and released it
during fall and winter. This resulted in positive AF s5(t) during the up-
take period, but its contribution remained secondary compared to NCP.
The seasonal trajectory of DIC thus closely followed NCP dynamics.
AF ncp(t) increased in January-February, peaked in March, and then
rapidly decreased as phytoplankton photosynthesis intensified during
the spring bloom. From spring through summer, AF ycp(t)remained
negative, reaching its minimum in July, reflecting strong autotrophic
activity. The combined effect of NCP and air—sea flux drove DIC changes
negative by mid-March, with the strongest reduction occurring in
August (Fig. 9b2).

4.3. Drivers of seasonal variability in pCO2 and Q,

The relative contributions of temperature, salinity, DIC, TA, and
nutrients (SiO4, POy4) to the seasonal cycles of pCO; and Q, were eval-
uated using the sensitivity analysis approach of Signorini et al. (2013). In
this method, the deviation of pCO; and Q, are defined relative to their
respective annual means:

5pcoz = pCOZ —PCOZ, 59,1 =Q; - ﬁa

where the overbar denotes the annual mean. The sensitivities of pCO2
and Q, to a given variable were determined by computing the deviation
caused by that variable while holding all other variables at their annual
mean values. The analysis was conducted at the deep-water site F22.
The results show that in the 1-D NeBEM, the seasonal variability of
the surface pCO, was primarily controlled by the combined effects of
temperature and DIC (Fig. 10a). Contributions from salinity, TA, SiOa,



L. Wang et al.

Diag Prog Semi-diag —— Observation

500 o b b b b b b B B s B i

1 a: Surface r

E N L
b il L
T 400 =
J . -
o ] N
< 5
o 300 L
_IlII]ITITlIT]IIHIIIIIIITITIHT[IITI]IITT]I”IWlIITIIHHITIHI_
_IAIllllllllLllllJIllllllllllllﬁlllLllllLJlllllIJllllllllllllllll_
8.2 - b: Surface =
o1 _:’_/'\ 3
T g 1] — E
o 8 7 k \ F
7.9 4 . -
7.8 4 1 F
_IVIIIIVIVlIVVIlIHIIlIIVVlVHIvlIIvllIIVVlIIIII‘I|IV|I¥III|V|VII_
_IIII|Illlllkll|IAIII|IllllllllllllklllllAlllllllllIkllllllllllll_
8.2 4 c: Bottom =
8.1 -
T 3 E
s 8- E
7.9 - -
7.8 4 -
_llIIIYYYTIITlIIIYIIIIII|TIY|TIYIYITIIYIYVIIIIYITIIIV]IIIYIIY|TIY_

1 2 3 4 5 6 7 8 9
Month

10 11 12
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and PO4 were negligible. Among these secondary terms, salinity made
the largest contribution, but its maximum influence accounted for only
~17 % of the temperature effect. This finding is consistent with the
results of Signorini et al. (2013).

The seasonal variability of Q,, on the other hand, was over-
whelmingly driven by changes in DIC (Fig. 10b). All other factors,
including temperature, salinity, TA, SiO4, and PO4, contributed at least
one order of magnitude less. 5o, closely followed the seasonal cycle of
the DIC-driven contribution: negative anomalies during winter, a pro-
gressive increase through spring, a decline in fall, and a pronounced
maximum in summer. This seasonal pattern agrees with the findings of
Gledhill et al. (2015).

We collected all available historic in-situ pCO2 measurements in MB
traceable back to 2002. Most of these samples were taken in regions

Standard deviation
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deeper than 20 m (Fig. 11). To investigate spatial differences, MB was
divided into two zones based on water depth: shallow (H < 20 m) and
deep (H > 20 m). Statistical analysis revealed that pCO2 in MB exhibited
a long-term linear decreasing trend, opposite to the increasing trend
observed in the interior Gulf of Maine and over the northeastern shelf
(Fig. 11al, b1). When separated into four seasons, pCO» in MB showed
significant seasonal variability, with concentrations generally
decreasing from winter through summer and increasing in fall
(Fig. 12al-a4).

Most of the available pH measurements in MB were collected in the
nearshore BH region shallower than 20 m, with records extending back
to 1994 (Fig. 11a2). These observations indicate a decreasing trend in
pH during spring at a rate of —-0.006 yr' over 1994-2021, despite
showing an increasing trend in other seasons (Fig. 12b1-b4). The pH
data in BH showed a clear seasonal coherence with pCO, in MB: pH
increased in winter and summer in response to decreases in pCOq
(Fig. 12al-bl, a3-b3). However, this coherence was less apparent
during spring and fall. This result is consistent with the findings from our
1-D experiments, which indicated that changes in pCO2 in MB and BH
were driven not only by temperature but also strongly modulated by
variations in DIC, while changes in DIC were largely determined by the
balance between net community production and air-sea gas exchanges

As noted earlier, because of insufficient metadata, no post-
calibration could be applied to pH records prior to the 1990s. If a po-
tential measurement uncertainty of +0.2 is considered, the decreasing
trend in pH reported for the Gulf of Maine (Fig. 11b2) should be inter-
preted with caution.

4.4. Evaluating TA-based algorithms for simulating pCO» and pH

We evaluated the importance of accounting for both biological and
physical contributions in calculating pH and pCO2 by comparing three
different methods of estimating TA: diagnostic, prognostic, and semi-
diagnostic algorithms. The seasonal variations of simulated pCO2 and
pH were compared with observations (Fig. 13), and the statistical biases
of each method were summarized using Taylor diagrams (Fig. 14).
Among the three methods, the semi-diagnostic approach best repro-
duced the observed seasonal pattern of pCO2 and yielded the smallest
RMSE, highlighting the necessity of including both biological and
physical effects in TA calculations. This finding is consistent with the
recommendation of Bellerby et al. (2005).

In contrast, the diagnostic and prognostic methods essentially
represent a salinity-dominant system. Their performance therefore de-
pends strongly on the accuracy of salinity simulation in the underlying
physical model. In our case, these two methods failed to capture the
observed seasonal cycle of surface pCO, at the deep-water site F22, even
though they produced reasonable pH simulation (Fig. 13). The semi-
diagnostic method successfully reproduced the observed seasonal

0.15

0.12

0.09

0.06

Standard deviation

0.03 |+i-f.

0

Fig. 14. Taylor diagrams summarizing the statistics of the model performance in simulating the surface pCO»and pH at F22 for the Diag, Prog, and Semi-diag cases.
Blue dot: observed. Rd dots: simulated. Black lines: standard deviation. Green dashed lines: the root-mean-square error. Blue lines: the correlation coefficient.
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progression of surface pCOy: a sharp decrease beginning in February, a
minimum in April, a gradual increase from May through October, and a
maximum in November. By comparison, the diagnostic and prognostic
methods simulated a minimum in March followed by a decreasing trend
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from June through September, inconsistent with the observations.

The Taylor diagrams further quantified the performance of the three
methods (Fig. 14). For pCO,, the semi-diagnostic algorithm clearly
outperformed the others, achieving the highest correlation coefficient
(0.80), the lowest RMSE (26.7 patm), and a standard deviation (42.0
patm) closest to the observed value (41.5 patm). In contrast, the diag-
nostic and prognostic methods produced correlation coefficients below
0.1 and RMSE values approaching 50.0 patm. Their simulated standard
deviations (30.8 and 31.0 patm, respectively) deviated by ~10 patm
from the observations. For pH, all three methods performed similarly,
with differences of <0.1 in correlation coefficient, RMSE, and standard
deviation.

4.5. Evaluation of empirical fitting methods versus NeBEM for pCO2 and
pH

The BGC+ and BGC+* models were introduced by McCarry et al.
(2021) as data-fitting approaches to estimate pCO2 and pH. These
methods first apply multiple linear regression (MLR) to TA and DIC and
then use CO2SYS to calculate carbonate system variables. A second
empirical approach, the temperature—salinity (T/S) fitting method, has
also been applied extensively to reconstruct carbonate system variables
when direct biogeochemical measurements are lacking. At the global
scale, T/S fitting has been used to develop ocean carbon climatology and
databases such as GLODAP and SOCAT (Lee et al., 2006, 2010; Taka-
hashi et al., 2009, 2020). Regionally, it has been applied in the North
Atlantic (Friis et al., 2003) and along the U.S. East Coast (Cai and Wang,
1998) to provide first-order estimates of TA and DIC. Its popularity
stems from simplicity and minimal data requirements, making it effec-
tive in open-ocean environments dominated by mixing. However, ac-
curacy declines in coastal and estuarine systems, where
non-conservative processes strongly influence carbonate chemistry.

Importantly, the T/S fitting method has been implemented with
different polynomial orders depending on study region and objectives.
Most large-scale applications have relied on first-order linear regressions
with salinity (and occasionally temperature) as predictors, which
perform well in open-ocean settings dominated by conservative mixing.
Second-order polynomials have been applied in marginal seas to capture
curvature in TA-S or DIC-S relationships (Friis et al., 2003). In estuaries
and coastal waters, where non-conservative processes dominate, third-
and fourth-order fits have been employed to resolve nonlinear vari-
ability (e.g., Cai et al., 2010; Loukos et al., 2000). Although higher-order
formulations can reduce statistical residuals, they often reduce trans-
ferability across regions and risk introducing artificial variability.

To assess whether such approaches can provide the same level of
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Table 3
Significant test results for the coefficient of each predictor under the polynormal function under different order.
AIC T S T2 TS s? T8 128 TS? S8 T 1% 7282 TS? s

First 622 X v

Second 622 X v X X X

Third 635 X v X X X X v v

Forth 637 X X v v X X X v v v X X v X

Note. \/ refers positive to the significant test. Shade means the predictor is unavailable under the current polynormal function. x refers insignificant parameters.
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Fig. 17. Scatter plots of T/S-fitting method estimated versus observed and DIC concentrations. Red dots: regression with all predictors. Blue dots: regression with
only significant predictors. Digital values: the correlation coefficient and root mean square error (RMSE).

information as a biogeochemical model in MB/HB, we compared BGC+,
BGC+*, and T/S fitting methods with the 1-D NeBEM using 2017 ob-
servations at four offshore stations around F22. For the T/S fitting
methods, our focus was on the influence of polynomial order on car-
bonate system estimations.

BGC+ and BGC+* methods. The BGC+ model produced observed
TA and DIC reasonably well, as shown in scatter plots (Fig. 15). The
fraction of explained variance (Rz) was 0.93 for TA and 0.71 for DIC,
while RMSE was 26.2 pmol/kg for TA and 53.7 pmol/kg for DIC.
Despite the acceptable statistical fit, DIC prediction carried sub-
stantial uncertainty, with biases up to ~150 pmol/kg.

When the fitted TA and DIC were used in CO2SYS, the predicted
pCO; and pH failed to capture observed seasonal variability of surface
pCO- (Fig. 16). Both observations and NeBEM showed a sharp decline in
pCO; from mid-February to May, followed by a gradual increase from
summer though fall, but the BGC+ model produced nearly constant
values over this period. This failure was primarily due to uneven sam-
pling: most measurements occurred in summer and fall, with sparse
coverage in winter and spring, leaving the regression poorly
constrained.

For pH, the BGC+ model performed similarly with NeBEM at the
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bottom but failed to capture seasonal variability at the surface, though
mean values were closer to observations than NeBEM (Fig. 16b, c).
Comparisons of BGC+ and BGC*-+ showed no meaningful differences, as
both yielded nearly identical results.

T/S fitting methods. Using the T/S data collected at four stations
around F22 in MB, we evaluated first- through fourth-order T/S fits
for DIC. Results of coefficient significance tests are summarized in
Table 3, with observed versus predicted DIC shown in Fig. 17 and
implications for pCO, and pH presented in Fig. 18.

Statistical testing indicated that a first-order linear regression was
sufficient. The AIC did not improve with the inclusion of second-order
terms, and the increase in AIC for third- and fourth-order regressions
was < 5, indicating no justification for higher-order fits. Coefficient tests
confirmed that in the first-order regression, salinity was the only sig-
nificant predictor. In fact, the salinity-only regression slightly out-
performed the salinity-temperature regression in terms of RMSE (both
R? = 0.8, but RMSE reduced from 46.04 to 45.91 pmol/kg).

Third- and fourth-order regressions showed marginal improvements
in RMSE and R? when all terms were included, but these gains lacked
statistical significance. Moreover, when the only significant coefficients
were retained, the fourth-order regression degraded substantially (R2
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dropped to 0.38, RMSE increased to 98.6 pmol/kg). Thus, higher-order
fits were not statistically justified.

When applied to carbonate system calculations, the choice of poly-
nomial order strongly influenced outcomes. Using CO2SYS with a fixed
TA-S relationship, DIC from the first-order regression (salinity-only)
produced pCO, and pH estimates consistent with observations
(Fig. 18al-cl). Adding temperature or second-order terms yielded no
improvement (Fig. 18 a2-c2). By contrast, third- and fourth-order re-
gressions, although statistically reduced RMSE in DIC, introduced large
variability and unrealistic seasonal fluctuations in pCO; and pH,
particularly in summer-fall (Fig. 18 a3-c3, a4-c3). This instability per-
sisted even when only significant terms were included. These results
emphasize that higher-order T/S fitting can introduce artificial vari-
ability that diverges substantially from observed carbonate system
dynamics.

Overall, both BGC+ and T/S fitting are purely empirical methods
that rely heavily on sampling density and distribution, with no mecha-
nistic connection to underlying processes. They can reconstruct car-
bonate system variables under certain conditions but cannot reproduce
seasonal cycles based on available 2017 MB dataset or diagnose physical
and biogeochemical drivers. In contrast, NeBEM not only reproduced
observed variability but also resolved the mechanisms behind it (e.g.,
spring bloom uptake, air-sea COy exchange, nitrification/denitrifica-
tion). This process-based capability represents a fundamental advantage
of mechanistic models over empirical fitting approaches.

5. Summary

Using the 1-D NeBEM in MB/BH, we investigated seasonal and
interannual variability of ocean acidification (OA) by assessing model
skill in reproducing observed seasonal cycles of OA-related variables
(pCO; and pH), testing sensitivity to parameterizations and algorithms
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for calculating DIC, TA, pCO,, and pH, exploring the biochemical
mechanism underlying OA condition, and evaluating empirical fitting
methods comparing to NeBEM.

The model successfully reproduced seasonal and interannual vari-
ability of nutrients, DO, Chl-a, pCO; and pH at the deep offshore site but
failed at the shallow inner- bay site. Results indicate that OA in the outer
bay is primarily driven by surface meteorological forcing, whereas in the
inner bay it is controlled by river discharge-induced advection and
mixing. These findings highlight the need for 3-D modeling in nearshore
regions.

At the offshore site, the model skill reached reasonable or better
levels, with E/VG rankings for T, S, DO, and pCO» under ARMAE, PB,
and CF criteria, and an E/VG score for pH under PB. The model further
suggested that, in outer MB, TA variability, although underestimated
due to the 1-D limitation, was primarily regulated by nitrification versus
denitrification and net community production (NCP), while the contri-
bution of benthic remineralization was negligible. DIC changes were
largely modulated by NCP, with air-sea CO5 exchange acting as a
comparable first-order driver. Spring blooms contributed to seasonal TA
peaks through NCP.

Among TA algorithms tested, the semi-diagnostic method best
reproduced observed seasonal pCO; variability, yielding the highest
correlation and lowest RMSE, though all methods performed similarly
for pH. Comparisons with multiple linear regression (BGC+) showed
that empirical approaches depend heavily on sampling density and
distribution. Because most observations occurred in summer and fall and
few in winter-spring, the BGC+ regression was poorly constrained and
failed to capture the observed seasonal cycle of surface pCO,. The BGC+
and BGC*+ models performed nearly identically.

For T/S fitting, statistical tests confirmed that a first-order salinity-
based regression was sufficient, with no improvement from higher-order
polynomials. Third- and fourth-order fits reduced RMSE slightly but
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introduced unrealistic variability in pCO» and pH, underscoring the risk
of artificial fluctuations when polynomial order is increased.

Overall, the 1-D NeBEM provided valuable insights into local phys-
ical and biogeochemical drivers of OA in MB/HB and effectively
resolved seasonal and interannual cycles of key variables. However, in
nearshore areas, acidification is governed by complex 3-D processes
linked to multiple river discharges, advection, and mixing. Thus, while
1-D modeling provides a useful framework for mechanism testing and
parameter evaluation, resolving bay-scale OA requires full 3-D simula-
tions. Additionally, this simplified modeling approach can be applied to
other coastal regions where vertical processes dominate and can serve as
a preliminary diagnostic tool prior to full 3-D implementation. While
NeBEM more accurately captures carbonate system dynamics, empirical
relationships remain useful tools for initial assessment in regions lacking
sufficient observations or biogeochemical parameterization.
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The temperature-salinity (T/S) fitting method is a widely used empirical approach for estimating total alkalinity (TA) and dissolved inorganic
carbon (DIC) when direct measurements are unavailable. This method has been applied with polynomial formulations of varying order, depending on
study objectives and regional settings. In this study, we evaluated first-through fourth-order T/S fits for DIC using 2017 observational data collected at
four stations around F22 in MB and assessed their performance. Further comparisons were also made for pCO, and pH estimated with CO2SYS using

the fitted DIC.

The polynomial formulations follow the approach of Loukos et al. (2000) and the least-square regression functions derived from the data are given

as:

e First-order:

DIC = 1968.57 + 3.73T" + 61.67S" (A1)
e Second-order:
DIC =1969.10 + 4.78T" + 63.21S" — 1.39T** + 2.03T*S* + 1.535*> (A.2)
o Third-order:
DIC = 1975.45 + 5.22T" + 33.79S* — 12.26T*% — 1.20T"S" + 6.405"% + 5.17T*% 4 35.36T"%S* + 23.12T*S** + 9.275*3 (A.3)
e Fourth-order:
DIC = 2000.68 + 26.26T* + 4.63S* — 76.96T*> — 75.90T*S* — 20.925*% — 20.86T*> + 27.37T*%S* + 51.83T*S** + 36.865"% + 26.82T**
+ 28.12T*3S + 45.50T*25*% 4 57.94T*S*® + 13.495** (A.4)
Here, T* and S* are normalized temperature and salinity defined as:
T-T S-S
T = .S = (A.5)
or Os

where T and S are the mean temperature and salinity, and o7 and o5 are their standard deviations (Quinn and Keough, 2002). For MB, T = 10.74 °C

and S = 31 PSU, with 67 = 3.8°C and 65 = 0.93 PSU.
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The statistical significance of polynomial coefficients at the 95 % confidence level was tested using Student’s t-distribution (Chen et al. 1995):

a;
o Cii

> toos(N—T1) (A.6)

where q; is the ith regression coefficient, r is the polynomial degree, ¢ is the RMSE of predicted vs observed DIC, C is the inverse covariance matrix of
the predicters, N is the number of DIC records, and N — r is the degrees of freedom.

The necessity of higher-order terms is further evaluated using the Akaike Information Criterion (AIC; Burnham and Anderson, 2004). For the least
squares fits with normally distributed errors, AIC is expressed as:

AIC = Nlog(o?) + 2K A7)

where K is the total number of significant predictors, including intercept and bias terms. A higher-order regression is adopted only if AIC decreases by

more than five relatives to the lower-order fit.
Table Al

The parameters selected for 1-D NeBEM experiments.

Parameter Unit Value
Fraction of carbon dioxide in the air patm 350
Absorption of silt* 0.07
Absorption coefficient of clear water 1/m 0.036
Backscatter coefficient of clear water 1/m 0.0016
Photosynthetically active fraction of shortwave radiation* / 0.0473
Sinking velocity for small-size pom m/d 1.0
Sinking velocity for medium-size pom m/d 5.0
Sinking velocity for large-size pom m/d 10.0
Nitrate fraction of demineralized nitrogen for benthic organic matter / 0.9
Remineralization rate for benthic dissolved organic matter 1/d 0.0001
Remineralization rate for benthic particulate organic matter 1/d 0.0025
Remineralization rate for benthic refractory matter 1/d 0.001
Critical shear velocity for resuspension m/s 0.02
Specific nitrification rate 1/d 0.5
Q_10 temperature coefficient for bacteria, phytoplankton, and zooplankton / 2.0
Bacteria maximum specific uptake at the reference temperature 1/d 2.2
Bacteria Specific mortality at the reference temperature 1/d 0.05
Bacteria Michaelis-Menten constant for oxygen limitation / 0.31
Bacteria Michaelis-Menten constant for nitrate limitation mmol N/m? 0.5
Bacteria Michaelis-Menten constant for phosphate limitation mmol P/m® 0.1
Bacteria Specific rest respiration at reference temperature 1/d 0.1
Oxygen consumed per carbon respired for bacteria, phytoplankton, and zooplankton mmol Oy/mg C 0.1
Diatom maximum specific productivity at reference temperature* 1/d 1.375
Nanophytoplankton maximum specific productivity at reference temperature 1/d 1.625
Picophytoplankton maximum specific productivity at reference temperature 1/d 2.0
Microphytoplankton maximum specific productivity at reference temperature 1/d 1.1125
Diatom and nanophytoplankton specific rest respiration at reference temperature 1/d 0.04
Picophytoplankton specific rest respiration at reference temperature 1/d 0.045
Microphytoplankton specific rest respiration at reference temperature 1/d 0.035
Diatom and microphytoplankton minimum nitrogen to carbon ratio mmol N/mg C 0.0042
Nanophytoplankton minimum nitrogen to carbon ratio mmol N/mg C 0.005
Picophytoplankton minimum nitrogen to carbon ratio mmol N/mg C 0.006
Diatom and microphytoplankton minimum phosphorus to carbon ratio mmol P/mg C 0.0001
Nanophytoplankton minimum phosphorus to carbon ratio mmol P/mg C 0.000225
Picophytoplankton minimum phosphorus to carbon ratio mmol P/mg C 0.00035
Diatom and nanophytoplankton maximum nitrogen to carbon ratio mmol N/mg C 1.075
Picophytoplankton maximum nitrogen to carbon ratio mmol N/mg C 1.05
Microphytoplankton maximum nitrogen to carbon ratio mmol N/mg C 1.1
Diatom and nanophytoplankton maximum phosphorus to carbon ratio mmol P/mg C 2.0
Picophytoplankton maximum phosphorus to carbon ratio mmol P/mg C 1.5
Microphytoplankton maximum phosphorus to carbon ratio mmol P/mg C 2.7
Diatom nitrate affinity m®/mg C/d 0.0025
Nanophytoplankton nitrate affinity m®/mg C/d 0.004
Picophytoplankton nitrate affinity m®/mg C/d 0.006
Microphytoplankton nitrate affinity m®/mg C/d 0.002
Diatom ammonium affinity m®/mg C/d 0.0025
Nanophytoplankton ammonium affinity m®/mg C/d 0.004
Picophytoplankton ammonium affinity m®/mg C/d 0.007
Microphytoplankton ammonium affinity m®/mg C/d 0.002
Diatom phosphate affinity m®/mg C/d 0.003
Nanophytoplankton phosphate affinity m®/mg C/d 0.004
Picophytoplankton phosphate affinity m®/mg C/d 0.006
Microphytoplankton phosphate affinity m®/mg C/d 0.002
Diatom maximum effective chlorophyll to carbon photosynthesis ratio* mg Chl/mg C 0.06
Nanophytoplankton maximum effective chlorophyll to carbon photosynthesis ratio mg Chl/mg C 0.025
Picophytoplankton maximum effective chlorophyll to carbon photosynthesis ratio mg Chl/mg C 0.015

(continued on next page)
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Table A1 (continued)

Parameter Unit Value
Microphytoplankton maximum effective chlorophyll to carbon photosynthesis ratio mg Chl/mg C 0.045
Diatom 1.1 of minimal specific lysis rate* 1/d 0.05
Nanophytoplankton 1.1 of minimal specific lysis rate 1/d 0.05
Picophytoplankton 1.1 of minimal specific lysis rate 1/d 0.055
Microphytoplankton 1.1 of minimal specific lysis rate 1/d 0.045
Diatom and microphytoplankton maximum nutrient-limitation-induced sinking velocity m/d 5.0
Nanophytoplankton and picophytoplankton maximum nutrient-limitation-induced sinking velocity m/d 0.0
Oxygen produced per unit of carbon fixed for phytoplankton mmol Oy/mg C 0.11
Excreted fraction of primary production for phytoplankton / 0.2
Respired fraction of primary production for phytoplankton / 0.2
Threshold for phosphorus limitation for phytoplankton / 1.0
Threshold for nitrogen limitation for phytoplankton / 1.0
Michaelis-Menten constant for silicate limitation for diatom mmol/m> 0.2
Mesozooplankton maximum specific uptake at reference temperature 1/d 1.0
Microzooplankton maximum specific uptake at reference temperature* 1/d 2.0
Nanoflagellates maximum specific uptake at reference temperature 1/7d 1.5
Mesozooplankton Michaelis-Menten constant for food uptake mg C/m> 36
Microzooplankton Michaelis-Menten constant for food uptake* mg C/m> 32
Nanoflagellates Michaelis-Menten constant for food uptake mg C/m® 28
Mesozooplankton assimilation efficiency / 0.6
Microzooplankton assimilation efficiency* / 0.5
Nanoflagellates assimilation efficiency / 0.4
Mesozooplankton specific rest respiration at reference temperature 1/7d 0.5
Microzooplankton specific rest respiration at reference temperature 1/d 0.02
Nanoflagellates specific rest respiration at reference temperature 1/d 0.025
Mesozooplankton maximum mortality due to oxygen limitation 1/d 0.2
Microzooplankton maximum mortality due to oxygen limitation 1/d 0.25
Nanoflagellates maximum mortality due to oxygen limitation 1/d 0.3
Mesozooplankton phosphorus to carbon ratio mmol P/mg C 0.000786
Microzooplankton phosphorus to carbon ratio mmol P/mg C 0.01
Nanoflagellates phosphorus to carbon ratio mmol P/mg C 0.001
Mesozooplankton nitrogen to carbon ratio mmol N/mg C 0.0126
Microzooplankton nitrogen to carbon ratio mmol N/mg C 0.0167
Nanoflagellates nitrogen to carbon ratio mmol N/mg C 0.0167
Michaelis-Menten constant to perceive food for zooplankton mg C/m® 12
Fraction of unassimilated prey that is excreted for zooplankton / 0.5
Dissolved fraction of excreted/dying matter for zooplankton / 0.5
Basal mortality for zooplankton 1/d 0.05
Power of the calcification law / 0.81
Power of the dissolution law / 2.22
Maximum rain ratio from PISCES / 0.6
Maximum specific dissolution rate 1/d 0.03
Remineralization rate for benthic calcite* 1/7d 0.05

Note. Superscript * indicates the sensitive parameters listed in Table A-2.

Table A2
Sensitive Parameters Index.

Parameter Sensitivity index
Remineralization rate for benthic calcite 21.27
Photosynthetically active fraction of shortwave radiation 7.77

Absorption of silt 1.02

Diatoms maximum effective chlorophyll-to-carbon photosynthesis ratio 0.92
Microzooplankton maximum specific uptake at a reference temperature 0.77
Microzooplankton assimilation efficiency 0.70

Diatoms 1.1 of minimal specific lysis rate 0.66

Diatoms maximum specific productivity at a reference temperature 0.56
Microzooplankton Michaelis-Menten constant for food uptake 0.53

Appendix B. Sensitivity of Biogeochemical Parameters in NeBEM

Unlike hydrodynamic models, which are primarily constrained by physical laws, biogeochemical models encompass a very large number of pa-
rameters describing complex biological and chemical processes. For example, the ERSEM module embedded within NeBEM includes >100 parameters
(Table A-1). These parameters were specified based on literature describing lower-trophic food web dynamics in MB/HB, together with long-term
monitoring and modeling studies.

Since 1994, the unstructured-grid Row Column Advanced water quality model (UG-RCA) has been applied to MB/HB to assess eutrophication and
water quality (Xue et al., 2014). Although UG-RCA does not explicitly resolve carbonate chemistry or ocean acidification, the 23-year simulation
(1994-2016) successfully reproduced seasonal and interannual variability of nutrients, phytoplankton biomass, and dissolved oxygen (Xue et al.,
2014). In addition, simpler lower-trophic ecosystem models, such as NPZ or NPZD formulations (Frank and Chen, 1996, 2001; Tian et al., 2015; Zang
et al., 2021), have been widely applied to the Gulf of Maine, including MB. These models reliably simulated spring and fall phytoplankton blooms but
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lacked the chemical formulations required to calculate OA-related variables such as pCOs, pH, Q,, DIC, and TA. The parameterization of NeBEM was
therefore guided by insights from these earlier efforts, while extending the formulations to resolve carbonate chemistry.

The 1-D experiments in this study aimed to identify a parameter set capable of reproducing the observed biogeochemical features in MB/HB.
Because parameters span wide ranges of uncertainty, we conducted a systematic sensitivity analysis starting from the optimal parameter set that
produced the best simulation of nutrients, Chl-a, DO, pCO,, and pH. Using the approach defined in Eq. (15), we tested the robustness of the model to
parameter perturbations and quantified sensitivity indices for each tested parameter.

The analysis revealed that ten parameters (listed in Table A-2) were particularly sensitive, with changes leading to significant alterations in model
solutions. Among these, the fraction of shortwave radiation available for photosynthesis and the benthic calcite remineralization rate exhibited the
highest sensitivity indices, meaning that small changes in their values strongly influenced simulated OA variables. This finding highlights the
importance of accurately constraining these parameters in order to enhance model robustness.

More broadly, the sensitivity analysis underscores three scientific and practical implications. The first is model uncertainty: identifying sensitive
parameters clarifies where model solutions are most vulnerable, allowing uncertainty bounds on OA projections to be better quantified. The second is
monitoring priorities: sensitive parameters, particularly those linked to light availability and benthic remineralization, should be prioritized for field
measurements in MB/HB to reduce uncertainties in model calibration. The third is mechanistic insights: the analysis shows which biological and
chemical processes exert the strongest control over OA dynamics. In NeBEM, light-driven primary production and benthic calcite cycling emerged as
the most influential, reinforcing their roles in MB’s carbonate system.

Thus, sensitivity analysis provides a crucial bridge between model formulation, field measurement, and OA forecasting. To improve NeBEM's
predictive skill for MB/HB, future work should focus on refining these critical parameters through targeted observations and experiments.

Data availability Denvil-Sommer, A., Gehlen, M., Vrac, M., Mejia, C., 2019. LSCE-FFNN-v1: a two-step
neural network model for the reconstruction of surface ocean p CO 2 over the global
ocean. Geosci. Mod. Dev. 12 (5), 2091-2105.
Data will be made available on request. Dore, J.E., Lukas, R., Sadler, D.W., Church, M.J., Karl, D.M., 2009. Physical and
biogeochemical modulation of ocean acidification in the central North Pacific. In:
Proceedings of the National Academy of Sciences, 106, pp. 12235-12240.
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